An extension of the topological degree in Hilbert space

被引:6
作者
Berkovits, J. [1 ]
Fabry, C.
机构
[1] Univ Oulu, Dept Math Sci, POB 3000, Oulu 90014, Finland
[2] Catholic Univ Louvain, Inst Math & Pure Appl, B-1348 Louvain, Belgium
关键词
D O I
10.1155/AAA.2005.581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define classes of mappings of monotone type with respect to a given direct sum decomposition of the underlying Hilbert space H. The new classes are extensions of classes of mappings of monotone type familiar in the study of partial differential equations, for example, the class (S+) and the class of pseudomonotone mappings. We then construct an extension of the Leray-Schauder degree for mappings involving the above classes. As shown by (semi-abstract) examples, this extension of the degree should be useful in the study of semilinear equations, when the linear part has an infinite-dimensional kernel.
引用
收藏
页码:581 / 597
页数:17
相关论文
共 14 条
[1]  
[Anonymous], 1982, NONLINEAR PHENOMENA
[2]  
Berkhout AJ, 1996, J SEISM EXPLOR, V5, P1
[3]   On the Leray-Schauder formula and bifurcation [J].
Berkovits, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (02) :451-469
[4]  
BERKOVITS J, 1990, DIFFER INTEGRAL EQU, V3, P945
[5]  
Berkovits J, 2004, PORT MATH, V61, P439
[6]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[7]  
Brezis H., 1978, ANN SCUOLA NORM SUP, V5, P225
[8]  
BROWDER FE, 1983, P S PURE MATH 2, V39
[9]   ITERATIVE AND VARIATIONAL-METHODS FOR THE SOLVABILITY OF SOME SEMILINEAR EQUATIONS IN HILBERT-SPACES [J].
FONDA, A ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (02) :355-375