A POSTERIORI ERROR CONTROL OF DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC OBSTACLE PROBLEMS

被引:1
作者
Gudi, Thirupathi [1 ]
Porwal, Kamana [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Finite element; discontinuous Galerkin; a posteriori error estimate; obstacle problem; variational inequalities; Lagrange multiplier; FINITE-ELEMENT-METHOD; APPROXIMATION; INEQUALITIES; CONVERGENCE; ESTIMATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.
引用
收藏
页码:579 / 602
页数:24
相关论文
共 40 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]  
[Anonymous], 1995, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques
[3]  
[Anonymous], GALERKIN FINITE ELEM
[4]  
[Anonymous], ATT CONV ON F BRIOSC
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[7]  
Atkinson K., 2009, THEORETICAL NUMERICA
[8]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[9]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[10]  
Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99