Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems

被引:53
作者
Verhoosel, C. V. [1 ]
Gutierrez, M. A. [1 ]
Hulshoff, S. J. [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, NL-2600 GB Delft, Netherlands
关键词
random eigenvalue problem; stochastic finite elements; inverse power method;
D O I
10.1002/nme.1712
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new algorithm for the computation of the spectral expansion of the eigenvalues and eigenvectors of a random non-symmetric matrix is proposed. The algorithm extends the deterministic inverse power method using a spectral discretization approach. The convergence and accuracy of the algorithm is studied for both symmetric and non-symmetric matrices. The method turns out to be efficient and robust compared to existing methods for the computation of the spectral expansion of random eigenvalues and eigenvectors. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:401 / 424
页数:24
相关论文
共 22 条
[1]  
ADHIKARI S, 2003, P 9 INT C APPL STAT, V1, P201
[2]  
Bisplinghoff R. L., 1955, AEROELASTICITY
[3]   Efficient numerical strategies for spectral stochastic finite element models [J].
Chung, DB ;
Gutiérrez, MA ;
Graham-Brady, LL ;
Lingen, FJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (10) :1334-1349
[4]  
Der Kiureghian A., 1988, Probab. Eng. Mech, V3, P83, DOI [DOI 10.1016/0266-8920(88)90019-7, 10.1016/0266-8920(88)90019-7]
[5]  
Ditlevsen O., 1996, Structural reliability methods
[6]  
Ghanem R, 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6_4
[7]   Numerical solution of spectral stochastic finite element systems [J].
Ghanem, RG ;
Kruger, RM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 129 (03) :289-303
[8]  
Ghosh D, 2005, 46 AIAA ASME ASCE AH
[9]  
Ghosh D, 2004, 45 AIAA ASME ASCE AH
[10]  
Golub G. H., 1996, MATRIX COMPUTATIONS