Spectral absorption properties of organic carbon aerosol during a polluted winter in Beijing, China

被引:18
作者
Wu, Yunfei [1 ]
Li, Jiwei [1 ,2 ]
Jiang, Chen [1 ,2 ]
Xia, Yunjie [1 ,2 ]
Tao, Jun [3 ]
Tian, Ping [4 ]
Zhou, Chang [1 ,2 ]
Wang, Chaoying [1 ,2 ]
Xia, Xiangao [1 ,6 ]
Huang, Ru-jin [5 ]
Zhang, Renjian [1 ,6 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Minist Ecol & Environm, South China Inst Environm Sci, Guangzhou 510530, Peoples R China
[4] Beijing Weather Modificat Off, Beijing 100089, Peoples R China
[5] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Key Lab Aerosol Chem & Phys, Xian 710061, Peoples R China
[6] Chinese Acad Sci, Xianghe Observ Whole Atmosphere, Inst Atmospher Phys, Xianghe 065400, Peoples R China
关键词
Spectral absorption properties; Organic carbon; Black carbon; Size distribution; PARTICLE SOOT PHOTOMETER; PARTICULATE BROWN CARBON; IN-SITU AEROSOL; LIGHT-ABSORPTION; BLACK CARBON; OPTICAL-PROPERTIES; SOURCE APPORTIONMENT; CHEMICAL-COMPOSITION; MIXING STATE; SOUTHEASTERN MARGIN;
D O I
10.1016/j.scitotenv.2020.142600
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A fraction of organic carbon (OC) is found to exhibit the capability to absorb solar radiation. However, the absorption properties of OC remain poorly characterized partly due to uncertainties in determination methods. In this study, the absorption coefficient (b(ap)) of OC (b(ap,OC)) in Beijing during a polluted winter was estimated on the basis of the combined measurements of black carbon (BC) size distribution and total aerosol b(ap) (b(ap,meas)). The bare BC b(ap) (b(ap,bareBC)) calculated using Mie theory on the basis of measured size distribution exhibited weak wavelength dependence, with a mean absorption Angstrom exponent (AAE) of 0.56 +/- 0.04 within the 470-660 nm wavelength range, which was lower than the value of 1 commonly used for freshly emitted BC. The calculated b(ap,bareBC) was compared with b(ap,meas) at 950 nm to derive the coating thickness of BC, from which the calculation of coated BC b(ap) (b(ap,coatBC)) within 370-660 nm was based using the core-shell Mie model. Given the thick coatings, the AAE of coated BC, with a mean of 0.53 +/- 0.12, was slightly lower than that of bare BC. Subsequently, b(ap,OC) was obtained by subtracting b(ap,coatBC) from bap,meas, accounting for 59.57 +/- 4.82% of bap,meas at 370 nm on average. The average mass absorption efficiency of OC was estimated to be 1.48 +/- 0.36 m(2) g(-1) at 370 nm. b(ap,OC) significantly decreased as wavelength increased, deriving an AAE of OC with a mean of 2.72 +/- 0.32 within the 370-660 nm range. The level of b(ap,OC) estimated on the basis of a widely used attribution method assuming a constant BC AAE of 1 was similar to 60% lower than the currently presented value, probably underestimating OC radiative effect by a factor of >3. More accurate estimations of b(ap,OC) based on more advanced measurements and suitable theory calculations are recommended to provide more reliable assessments of OC radiative effects. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 86 条
  • [1] Shapes of soot aerosol particles and implications for their effects on climate
    Adachi, Kouji
    Chung, Serena H.
    Buseck, Peter R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [2] Brown carbon spheres in East Asian outflow and their optical properties
    Alexander, Duncan T. L.
    Crozier, Peter A.
    Anderson, James R.
    [J]. SCIENCE, 2008, 321 (5890) : 833 - 836
  • [3] Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols
    Andreae, M. O.
    Gelencser, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 3131 - 3148
  • [4] Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China
    Andreae, Meinrat O.
    Schmid, Otmar
    Yang, Hong
    Chand, Duli
    Yu, Jian Zhen
    Zeng, Li-Min
    Zhang, Yuan-Hang
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (25) : 6335 - 6350
  • [5] Towards aerosol light-absorption measurements with a 7-wavelength Aethalometer:: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer
    Arnott, WP
    Hamasha, K
    Moosmüller, H
    Sheridan, PJ
    Ogren, JA
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2005, 39 (01) : 17 - 29
  • [6] Solar absorption by elemental and brown carbon determined from spectral observations
    Bahadur, Ranjit
    Praveen, Puppala S.
    Xu, Yangyang
    Ramanathan, V.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (43) : 17366 - 17371
  • [7] Spectral absorption properties of atmospheric aerosols
    Bergstrom, R. W.
    Pilewskie, P.
    Russell, P. B.
    Redemann, J.
    Bond, T. C.
    Quinn, P. K.
    Sierau, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (23) : 5937 - 5943
  • [8] Bohren C.F., 1983, Absorption and Scattering of Light by Small Particles, P287, DOI [10.1002/9783527618156, DOI 10.1002/9783527618156]
  • [9] Light absorption by carbonaceous particles: An investigative review
    Bond, TC
    Bergstrom, RW
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (01) : 27 - 67
  • [10] Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon
    Cappa, Christopher D.
    Onasch, Timothy B.
    Massoli, Paola
    Worsnop, Douglas R.
    Bates, Timothy S.
    Cross, Eben S.
    Davidovits, Paul
    Hakala, Jani
    Hayden, Katherine L.
    Jobson, B. Tom
    Kolesar, Katheryn R.
    Lack, Daniel A.
    Lerner, Brian M.
    Li, Shao-Meng
    Mellon, Daniel
    Nuaaman, Ibraheem
    Olfert, Jason S.
    Petaja, Tuukka
    Quinn, Patricia K.
    Song, Chen
    Subramanian, R.
    Williams, Eric J.
    Zaveri, Rahul A.
    [J]. SCIENCE, 2012, 337 (6098) : 1078 - 1081