Contribution of oxygen functional groups in graphene to the mechanical and interfacial behaviour of nanocomposites: Molecular dynamics and micromechanics study

被引:30
作者
Yang, Seunghwa [1 ]
Shin, Hyunseong [2 ]
Cho, Maenghyo [3 ]
机构
[1] Chung Ang Univ, Sch Energy Syst Engn, Mech Engn Div, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Inha Univ, Sch Mech Engn, 100 Inha Ro, Incheon 22212, South Korea
[3] Seoul Natl Univ, Sch Mech & Aerosp Engn, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene oxide; Nanocomposites; Molecular dynamics simulation; Surface roughness; DOUBLE-INCLUSION MODEL; ELASTIC PROPERTIES; THERMAL TRANSPORT; AB-INITIO; MULTISCALE; COMPOSITES; INTERPHASE; POLYMER; MODULI; RANGE;
D O I
10.1016/j.ijmecsci.2020.105972
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the results of molecular dynamics (MD) simulations and a mean-field micromechanics model, we report on some positive contributions of the oxygen functional groups in single-layer graphene oxide (GO) to the mechanical and interfacial properties of polyethylene (PE)/graphene nanocomposites. As the epoxide and hydroxyl group degrade the mechanical properties of single-layer graphene, clear degradations in the longitudinal Young's and in-plane shear moduli are observed when the deformation of graphene is involved in the loading of the nanocomposite unit cells. However, a significant improvement in the longitudinal shear modulus of nanocomposites is predicted. By comparing the MD simulation results with double-inclusion (D-I) model predictions, contributions of the interphase zone and the interfacial stiffening effect to the elasticity of nanocomposites are again confirmed. Finally, we demonstrate a novel evolution of the out-of-plane normal stress and longitudinal shear stress in single-layer GO arising from its interaction with the surrounding PE matrix via atomic virial stress.
引用
收藏
页数:14
相关论文
共 46 条
  • [1] [Anonymous], 1998, MICROMECHANICS OVERA
  • [2] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
  • [3] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [4] Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles
    Chang, Seongmin
    Yang, Seunghwa
    Shin, Hyunseong
    Cho, Maenghyo.
    [J]. COMPOSITE STRUCTURES, 2015, 128 : 342 - 353
  • [5] Method of scale bridging for thermoelasticity of cross-linked epoxy/SiC nanocomposites at a wide range of temperatures
    Choi, Joonmyung
    Yang, Seunghwa
    Yu, Suyoung
    Shin, Hyunseong
    Cho, Maenghyo
    [J]. POLYMER, 2012, 53 (22) : 5178 - 5189
  • [6] Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage
    Dimitrakakis, Georgios K.
    Tylianakis, Emmanuel
    Froudakis, George E.
    [J]. NANO LETTERS, 2008, 8 (10) : 3166 - 3170
  • [7] THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS
    ESHELBY, JD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226): : 376 - 396
  • [8] Roughness parameters
    Gadelmawla, ES
    Koura, MM
    Maksoud, TMA
    Elewa, IM
    Soliman, HH
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 123 (01) : 133 - 145
  • [9] On the overall viscoelastic behavior of graphene/polymer nanocomposites with imperfect interface
    Hashemi, Roohollah
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 105 : 38 - 55
  • [10] A new structural model for graphite oxide
    He, HY
    Klinowski, J
    Forster, M
    Lerf, A
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 287 (1-2) : 53 - 56