Two-component interacting Tonks-Girardeau gas in a one-dimensional optical lattice

被引:9
作者
Chen, Shu [1 ,2 ,3 ]
Cao, Junpeng [3 ]
Gu, Shi-Jian [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, ITP, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
MANY-BODY PROBLEM; ULTRACOLD ATOMS; GROUND-STATE; TRANSITION; MIXTURES; FERMIONS; BOSONS; MODEL;
D O I
10.1209/0295-5075/85/60004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-component interacting Bose gas confined in a one-dimensional optical lattice with infinite intra-component repulsive interactions and tunable inter-component repulsions is studied. By a generalized Jordan-Wigner transformation, it is shown that this model can be solved exactly. The energy spectrum and explicit wave function are obtained. The physical quantities such as the off-diagonal density matrix, momentum distribution and single-particle von Neumann entropy of the present model display different properties from those of the Fermi-Hubbard model due to the different intrinsic symmetry of particles. Copyright (C) EPLA, 2009
引用
收藏
页数:5
相关论文
共 26 条
[1]   Phase diagram of two-component bosons on an optical lattice [J].
Altman, E ;
Hofstetter, W ;
Demler, E ;
Lukin, MD .
NEW JOURNAL OF PHYSICS, 2003, 5 :113.1-113.19
[2]   Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases [J].
Ao, P ;
Chui, ST .
PHYSICAL REVIEW A, 1998, 58 (06) :4836-4840
[3]   Instabilities in binary mixtures of one-dimensional quantum degenerate gases [J].
Cazalilla, MA ;
Ho, AF .
PHYSICAL REVIEW LETTERS, 2003, 91 (15) :150403-150403
[4]  
Cloizeaux J., 1966, J MATH PHYS, V7, P1384
[5]   Exact solution of strongly interacting quasi-one-dimensional spinor Bose gases [J].
Deuretzbacher, F. ;
Fredenhagen, K. ;
Becker, D. ;
Bongs, K. ;
Sengstock, K. ;
Pfannkuche, D. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[6]   Controlling spin exchange interactions of ultracold atoms in optical lattices [J].
Duan, LM ;
Demler, E ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[7]   UN SYSTEME A UNE DIMENSION DE FERMIONS EN INTERACTION [J].
GAUDIN, M .
PHYSICS LETTERS A, 1967, A 24 (01) :55-&
[8]   PERMUTATION SYMMETRY OF MANY-PARTICLE WAVE FUNCTIONS [J].
GIRARDEA.MD .
PHYSICAL REVIEW, 1965, 139 (2B) :B500-&
[10]   Soluble models of strongly interacting ultracold gas mixtures in tight waveguides [J].
Girardeau, M. D. ;
Minguzzi, A. .
PHYSICAL REVIEW LETTERS, 2007, 99 (23)