Critical behavior at the localization transition on random regular graphs

被引:56
作者
Tikhonov, K. S. [1 ,2 ,3 ]
Mirlin, A. D. [1 ,3 ,4 ,5 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Natl Res Univ Higher Sch Econ, Condensed Matter Phys Lab, Moscow 101000, Russia
[3] LD Landau Inst Theoret Phys RAS, Moscow 119334, Russia
[4] Karlsruhe Inst Technol, Inst Theorie Kondensierten Materie, D-76128 Karlsruhe, Germany
[5] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
METAL-INSULATOR-TRANSITION; MANY-BODY LOCALIZATION; BETHE LATTICE; ANDERSON LOCALIZATION; LEVEL STATISTICS; MODEL; SYSTEM; SYMMETRY; DENSITY; SHAPE;
D O I
10.1103/PhysRevB.99.214202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study numerically the critical behavior at the localization transition in the Anderson model on infinite Bethe lattice and on random regular graphs. The focus is on the case of coordination number m + 1 = 3, with a box distribution of disorder and in the middle of the band (energy E = 0), which is the model most frequently considered in the literature. As a first step, we carry out an accurate determination of the critical disorder, with the result W-C = 18.17 +/- 0.01. After this, we determine the dependence of the correlation volume N-xi = m(xi) (where xi is the associated correlation length) on disorder W on the delocalized side of the transition W < W-C, by means of population dynamics. The asymptotic critical behavior is found to be xi proportional to (W-C - W)(-1/2), in agreement with analytical prediction. We find very pronounced corrections to scaling, in similarity with models in high spatial dimensionality and with many-body localization transitions.
引用
收藏
页数:10
相关论文
共 70 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Recent progress in many-body localization [J].
Abanin, Dmitry A. ;
Papic, Zlatko .
ANNALEN DER PHYSIK, 2017, 529 (07)
[3]   SELF-CONSISTENT THEORY OF LOCALIZATION [J].
ABOUCHACRA, R ;
ANDERSON, PW ;
THOULESS, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (10) :1734-1752
[4]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[5]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[6]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[7]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[8]  
Biroli G., ARXIV12117334
[9]  
Biroli G., ARXIV181007545
[10]  
Biroli G, 2010, PROG THEOR PHYS SUPP, P187