Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications

被引:65
作者
Farokhi, Mehdi [1 ]
Mottaghitalab, Fatemeh [2 ]
Fatahi, Yousef [3 ,4 ]
Saeb, Mohammad Reza [5 ,6 ,7 ,8 ]
Zarrintaj, Payam [5 ,6 ,7 ,9 ]
Kundu, Subhas C. [10 ]
Khademhosseini, Ali [11 ]
机构
[1] Pasteur Inst Iran, Natl Cell Bank Iran, Tehran, Iran
[2] Univ Tehran Med Sci, Fac Pharm, Nanotechnol Res Ctr, Tehran, Iran
[3] Univ Tehran Med Sci, Fac Pharm, Dept Pharmaceut Nanotechnol, Tehran, Iran
[4] USERN, Tehran, Iran
[5] Inst Color Sci & Technolog, Dept Resin, POB 16765-654, Tehran, Iran
[6] Inst Color Sci & Technolog, Dept Addidt, POB 16765-654, Tehran, Iran
[7] Iranian Color Soc, Adv Mat Grp, POB 1591637144, Tehran, Iran
[8] Amirkabir Univ Technol, Color & Polymer Res Ctr, POB 15875-4413, Tehran, Iran
[9] Urmia Univ, Fac Engn, Polymer Engn Dept, Orumiyeh, Iran
[10] Univ Minho, Res Grp 3Bs, Res Inst Biomat Biodegradables & Biomimet I3Bs, European Inst Excellence Tissue Engn & Regenerat, AvePk, P-4805017 Barco, Guimaraes, Portugal
[11] Univ Calif Los Angeles, Dept Bioengn, Dept Chem & Biomol Engn, Dept Radiol,Calif NanoSyst Inst, Los Angeles, CA USA
关键词
Articular cartilage; Silk fibroin; Intervertebral disk; Anterior cruciate ligament; Meniscus; Osteochondral defects; MESENCHYMAL STEM-CELLS; CRUCIATE LIGAMENT RECONSTRUCTION; MINIMUM FOLLOW-UP; ARTICULAR-CARTILAGE; ANNULUS FIBROSUS; IN-VITRO; OSTEOCHONDRAL DEFECTS; EXTRACELLULAR-MATRIX; CHONDROGENIC DIFFERENTIATION; AUTOLOGOUS CHONDROCYTES;
D O I
10.1016/j.eurpolymj.2019.03.035
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Regenerating chondral and osteochondral injuries is a main challenge in orthopedics. Some therapeutic strategies such as joint preservation operations, non-operative management, palliative surgery, and arthroplasty are the common clinical methods for repairing the cartilage defects. These treatments show often satisfactory as short-term outcomes and without clear long-term prospects. Over the past decade, the development of tissue engineering technologies offers a new therapeutic option to treat patients suffering from chondral lesions. Silk fibroin is a potent and advanced biomaterial for regenerating both soft and hard tissues. Fibroin scaffolds possess superior mechanical strength, suitable bioactivity, elasticity, degradability, and tailorable chemical structure. Due to the important properties as natural biomaterials, the fabrications of various types of scaffolds/matrices for regenerating the tissues like cartilage for regeneration and repairing the defects are possible. This review highlights the investigations on silk-based biomaterials for cartilage tissue engineering. The possibilities for future clinical application of silk fibroin based constructs in repairing intervertebral disk, anterior cruciate ligament, meniscus, and osteochondral defects are evaluated in detail.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 175 条
[1]   Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus [J].
Acaroglu, ER ;
Iatridis, JC ;
Setton, LA ;
Foster, RJ ;
Mow, VC ;
Weidenbaum, M .
SPINE, 1995, 20 (24) :2690-2701
[2]   Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering [J].
Agheb, Maria ;
Dinari, Mohammad ;
Rafienia, Mohammad ;
Salehi, Hossein .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 71 :240-251
[3]   Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration [J].
Almeida, H. V. ;
Eswaramoorthy, R. ;
Cunniffe, G. M. ;
Buckley, C. T. ;
O'Brien, F. J. ;
Kelly, Dj. .
ACTA BIOMATERIALIA, 2016, 36 :55-62
[4]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[5]  
Anderson D Greg, 2005, Spine J, V5, p260S, DOI 10.1016/j.spinee.2005.02.010
[6]  
[Anonymous], 1991, AM J KNEE SURG
[7]   Elucidating silk structure using solid-state NMR [J].
Asakura, Tetsuo ;
Suzuki, Yu ;
Nakazawa, Yasumoto ;
Holland, Gregory P. ;
Yarger, Jeffery L. .
SOFT MATTER, 2013, 9 (48) :11440-11450
[8]   Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components - Guidance of the inflammatory response as basis for osteochondral regeneration [J].
Barbeck, Mike ;
Serra, Tiziano ;
Booms, Patrick ;
Stojanovic, Sanja ;
Najman, Stevo ;
Engel, Elisabeth ;
Sader, Robert ;
Kirkpatrick, Charles James ;
Navarro, Melba ;
Ghanaati, Shahram .
BIOACTIVE MATERIALS, 2017, 2 (04) :208-223
[9]   Visualization of cartilage formation: Insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes [J].
Barna, Maria ;
Niswander, Lee .
DEVELOPMENTAL CELL, 2007, 12 (06) :931-941
[10]   The Maturation of Synthetic Scaffolds for Osteochondral Donor Sites of the Knee: An MRI and T2-Mapping Analysis [J].
Bedi, Asheesh ;
Foo, Li Foong ;
Williams, Riley J., III ;
Potter, Hollis G. .
CARTILAGE, 2010, 1 (01) :20-28