Frequency-encoded photonic qubits for scalable quantum information processing

被引:220
作者
Lukens, Joseph M. [1 ]
Lougovski, Pavel [1 ]
机构
[1] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA
关键词
WAVE-FORM GENERATION; ENTANGLED PHOTONS; OPTICAL-COMPONENT; KEY DISTRIBUTION; RING-RESONATOR; PULSE SHAPER; CHIP; AMPLITUDE; FABRICATION; MODULATORS;
D O I
10.1364/OPTICA.4.000008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency-a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled "spectral linear optical quantum computation" (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary N-qubit quantum gate may be performed in parallel on multiple N-qubit sets in the same linear optical device. Not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 78 条
[1]   Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications [J].
Agarwal, A ;
Toliver, P ;
Menendez, R ;
Etemad, S ;
Jackel, J ;
Young, J ;
Banwell, T ;
Little, BE ;
Chu, ST ;
Chen, W ;
Chen, WL ;
Hryniewicz, J ;
Johnson, F ;
Gill, D ;
King, O ;
Davidson, R ;
Donovan, K ;
Delfyett, PJ .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) :77-87
[2]   Large-alphabet quantum key distribution using energy-time entangled bipartite states [J].
Ali-Khan, Irfan ;
Broadbent, Curtis J. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[3]   Ultra-low power generation of twin photons in a compact silicon ring resonator [J].
Azzini, Stefano ;
Grassani, Davide ;
Strain, Michael J. ;
Sorel, Marc ;
Helt, L. G. ;
Sipe, J. E. ;
Liscidini, Marco ;
Galli, Matteo ;
Bajoni, Daniele .
OPTICS EXPRESS, 2012, 20 (21) :23100-23107
[4]   Hiding Single Photons with Spread Spectrum Technology [J].
Belthangady, Chinmay ;
Chuu, Chih-Sung ;
Yu, Ite A. ;
Yin, G. Y. ;
Kahn, J. M. ;
Harris, S. E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[5]   Modulation and measurement of time-energy entangled photons [J].
Belthangady, Chinmay ;
Du, Shengwang ;
Chuu, Chih-Sung ;
Yin, G. Y. ;
Harris, S. E. .
PHYSICAL REVIEW A, 2009, 80 (03)
[6]   Shaping frequency-entangled qudits [J].
Bernhard, Christof ;
Bessire, Baenz ;
Feurer, Thomas ;
Stefanov, Andre .
PHYSICAL REVIEW A, 2013, 88 (03)
[7]   Versatile shaper-assisted discretization of energy-time entangled photons [J].
Bessire, B. ;
Bernhard, C. ;
Feurer, T. ;
Stefanov, A. .
NEW JOURNAL OF PHYSICS, 2014, 16
[8]   Scalable generation of graph-state entanglement through realistic linear optics [J].
Bodiya, T. P. ;
Duan, L. -M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (14)
[9]   Photon Temporal Modes: A Complete Framework for Quantum Information Science [J].
Brecht, B. ;
Reddy, Dileep V. ;
Silberhorn, C. ;
Raymer, M. G. .
PHYSICAL REVIEW X, 2015, 5 (04)
[10]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)