Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids

被引:609
|
作者
Bara, Jason E. [1 ,2 ]
Carlisle, Trevor K. [1 ]
Gabriel, Christopher J. [2 ]
Camper, Dean [1 ]
Finotello, Alexia [1 ]
Gin, Douglas L. [1 ,2 ]
Noble, Richard D. [1 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
CARBON-DIOXIDE SOLUBILITY; REGULAR SOLUTION THEORY; GAS SEPARATIONS; NATURAL-GAS; 1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; HYDROCARBON SOLUBILITIES; POLYMER MEMBRANES; CAPTURE; PERMEABILITY; DIFFUSION;
D O I
10.1021/ie8016237
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Room-temperature ionic liquids (RTILs) are nonvolatile, tunable solvents that have generated significant interest across a wide variety of engineering applications. The use of RTILs as media for CO2 separations appears especially promising, with imidazolium-based salts at the center of this research effort. The solubilities of gases, particularly CO2, N-2, and CH4, have been studied in a number of RTILs. Process temperature and the chemical structures of the cation and anion have significant impacts on gas solubility and gas pair selectivity. Models based on regular solution theory and group contributions are useful to predict and explain CO2 solubility and selectivity in imidazolium-based RTILs. In addition to their role as a physical solvent, RTILs might also be used in supported ionic liquid membranes (SILMs) as a highly permeable and selective transport medium. Performance data for SILMs indicates that they exhibit large permeabilities as well as CO2/N-2 selectivities that Outperform many polymer membranes. Furthermore, the greatest potential of RTILs for CO2 separations might lie in their ability to chemically capture CO2 when used in combination with amines. Amines can be tethered to the cation or the anion, or dissolved in RTILs, providing a wide range of chemical solvents for CO2 capture. However, despite all of their promising features, RTILs do have drawbacks to use in CO2 separations, which have been overlooked as appropriate comparisons of RTILs to common organic solvents and polymers have not been reported. A thorough summary of the capabilities-and limitations-of imidazolium-based RTILs in CO2-based separations with respect to a variety of materials is thus provided.
引用
收藏
页码:2739 / 2751
页数:13
相关论文
共 50 条
  • [11] CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine
    Xiao, Min
    Liu, Helei
    Gao, Hongxia
    Olson, Wilfred
    Liang, Zhiwu
    APPLIED ENERGY, 2019, 235 : 311 - 319
  • [12] Solubility of CO2 in Binary Mixtures of Room-Temperature Ionic Liquids at High Pressures
    Lei, Zhigang
    Han, Jingli
    Zhang, Benfeng
    Li, Qunsheng
    Zhu, Jiqin
    Chen, Biaohua
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2012, 57 (08) : 2153 - 2159
  • [13] Thermodynamic model for CO2 absorption in imidazolium-based ionic liquids using cubic plus association equation of state
    Wang, Yiran
    Huang, Shaoxuan
    Liu, Xiangyang
    He, Maogang
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 378
  • [14] Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids
    Gao, Jubao
    Cao, Lingdi
    Dong, Haifeng
    Zhang, Xiangping
    Zhang, Suojiang
    APPLIED ENERGY, 2015, 154 : 771 - 780
  • [15] CO2 absorption characteristics of amino group functionalized imidazolium-based amino acid ionic liquids
    Kang, Sehee
    Chung, Yongchul G.
    Kang, Jo Hong
    Song, Hojun
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 297
  • [16] Absorption of CO2 with supported imidazolium-based ionic liquid membranes
    Cao, Baichuan
    Yan, Weiheng
    Wang, Jin
    Ding, Hong
    Yu, Yang
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2015, 90 (08) : 1537 - 1544
  • [17] Design of Functionalized Room-Temperature Ionic Liquid-Based Materials for CO2 Separations and Selective Blocking of Hazardous Chemical Vapors
    Miller, A. L., II
    Carlisle, T. K.
    LaFrate, A. L.
    Voss, B. A.
    Bara, J. E.
    Hudiono, Y. C.
    Wiesenauer, B. R.
    Gin, D. L.
    Noble, R. D.
    SEPARATION SCIENCE AND TECHNOLOGY, 2012, 47 (02) : 169 - 177
  • [18] Temperature Dependence of Volumetric and Dynamic Properties of Imidazolium-Based Ionic Liquids
    Khabaz, Fardin
    Zhang, Yong
    Xue, Lianjie
    Quitevis, Edward L.
    Maginn, Edward J.
    Khare, Rajesh
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (08) : 2414 - 2424
  • [19] Temperature Dependence of the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids
    Kerle, Daniela
    Ludwig, Ralf
    Geiger, Alfons
    Paschek, Dietmar
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (38) : 12727 - 12735
  • [20] Imidazolium-Based Copoly(Ionic Liquid) Membranes for CO2/N2 Separation
    Nellepalli, Pothanagandhi
    Tome, Liliana C.
    Vijayakrishna, Kari
    Marrucho, Isabel M.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (05) : 2017 - 2026