Genome editing in grass plants

被引:8
|
作者
Char, Si Nian [1 ]
Yang, Bing [1 ,2 ]
机构
[1] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA
[2] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA
基金
美国国家科学基金会; 比尔及梅琳达.盖茨基金会;
关键词
Genome editing; Cereal crops; ZFNs; TALENs; CRISPR; Cas9; Cas12a; Base editor; DOUBLE-STRAND BREAKS; CRISPR-CAS SYSTEMS; TARGETED MUTAGENESIS; TRANSCRIPTIONAL ACTIVATION; TAL EFFECTORS; RNA; DNA; BASE; RICE; NUCLEASES;
D O I
10.1007/s42994-019-00005-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cereal crops including maize, rice, wheat, sorghum, barley, millet, oats and rye are the major calorie sources in our daily life and also important bioenergy sources of the world. The rapidly advancing and state-of-the-art genome-editing tools such as zinc finger nucleases, TAL effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (CRISPR-Cas9-, CRISPR-Cas12a- and CRISPR/Cas-derived base editors) have accelerated the functional genomics and have promising potential for precision breeding of grass crops. With the availability of annotated genomes of the major cereal crops, application of these established genome-editing toolkits to grass plants holds promise to increase the nutritional value and productivity. Furthermore, these easy-to-use and robust genome-editing toolkits have advanced the reverse genetics for discovery of novel gene functions in crop plants. In this review, we document some of important progress in development and utilization of genome-editing tool sets in grass plants. We also highlight present and future uses of genome-editing toolkits that can sustain and improve the quality of cereal grain for food consumption.
引用
收藏
页码:41 / 57
页数:17
相关论文
共 50 条
  • [1] Genome editing in grass plants
    Si Nian Char
    Bing Yang
    aBIOTECH, 2020, 1 : 41 - 57
  • [2] Genome Editing of Plants
    Songstad, D. D.
    Petolino, J. F.
    Voytas, D. F.
    Reichert, N. A.
    CRITICAL REVIEWS IN PLANT SCIENCES, 2017, 36 (01) : 1 - 23
  • [3] Preface: Genome editing in plants
    Christou, Paul
    Dhingra, Amit
    Slamet-Loedin, Inez H.
    Oliveira, Margarida
    Chakraborty, Supriya
    Buyel, Johannes
    Stoger, Eva
    Schillberg, Stefan
    Orzaez, Diego
    Quemada, Hector
    TRANSGENIC RESEARCH, 2021, 30 (04) : 317 - 320
  • [4] The future of genome editing in plants
    Gilbertson, Larry
    Puchta, Holger
    Slotkin, R. Keith
    NATURE PLANTS, 2025,
  • [5] Preface: Genome editing in plants
    Paul Christou
    Amit Dhingra
    Inez H. Slamet-Loedin
    Margarida Oliveira
    Supriya Chakraborty
    Johannes Buyel
    Eva Stoger
    Stefan Schillberg
    Diego Orzaez
    Hector Quemada
    Transgenic Research, 2021, 30 : 317 - 320
  • [6] Genome Editing Tools in Plants
    Mohanta, Tapan Kumar
    Bashir, Tufail
    Hashem, Abeer
    Abd Allah, Elsayed Fathi
    Bae, Hanhong
    GENES, 2017, 8 (12)
  • [7] Genome editing for grass improvement and future agriculture
    Bilal, Muhammad
    Geng, Jie
    Chen, Lin
    Garcia-Caparros, Pedro
    Hu, Tao
    HORTICULTURE RESEARCH, 2025, 12 (02)
  • [8] Genome editing and chromosome engineering in plants
    Ojha, Arjun
    Zhang, Feng
    Patil, Gunvant B.
    PLANT GENOME, 2023, 16 (02):
  • [9] Seamless editing of the chloroplast genome in plants
    Elena Martin Avila
    Martin F. Gisby
    Anil Day
    BMC Plant Biology, 16
  • [10] Genome editing reagent delivery in plants
    Ghogare, Rishikesh
    Ludwig, Yvonne
    Bueno, Gela Myan
    Slamet-Loedin, Inez H.
    Dhingra, Amit
    TRANSGENIC RESEARCH, 2021, 30 (04) : 321 - 335