Bayesian information criteria and smoothing parameter selection in radial basis function networks

被引:73
作者
Konishi, S
Ando, T
Imoto, S
机构
[1] Kyushu Univ, Grad Sch Math, Higashi Ku, Fukuoka 8128581, Japan
[2] Univ Tokyo, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
关键词
Bayes approach; maximum penalised likelihood; model selection; neural network; nonlinear regression;
D O I
10.1093/biomet/91.1.27
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
By extending Schwarz's (1978) basic idea we derive a Bayesian information criterion which enables us to evaluate models estimated by the maximum penalised likelihood method or the method of regularisation. The proposed criterion is applied to the choice of smoothing parameters and the number of basis functions in radial basis function network models. Monte Carlo experiments were conducted to examine the performance of the nonlinear modelling strategy of estimating the weight parameters by regularisation and then determining the adjusted parameters by the Bayesian information criterion. The simulation results show that our modelling procedure performs well in various situations.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 43 条
[21]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[22]   Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model selection [J].
Lanterman, AD .
INTERNATIONAL STATISTICAL REVIEW, 2001, 69 (02) :185-212
[23]   A PRACTICAL BAYESIAN FRAMEWORK FOR BACKPROPAGATION NETWORKS [J].
MACKAY, DJC .
NEURAL COMPUTATION, 1992, 4 (03) :448-472
[24]  
MOODY JE, 1992, ADV NEUR IN, V4, P847
[25]   Fast Learning in Networks of Locally-Tuned Processing Units [J].
Moody, John ;
Darken, Christian J. .
NEURAL COMPUTATION, 1989, 1 (02) :281-294
[26]   NETWORK INFORMATION CRITERION - DETERMINING THE NUMBER OF HIDDEN UNITS FOR AN ARTIFICIAL NEURAL-NETWORK MODEL [J].
MURATA, N ;
YOSHIZAWA, S ;
AMARI, S .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06) :865-872
[27]  
Neal R. M., 1996, LECT NOTES STAT, V118
[28]   Regression and time series model selection using variants of the Schwarz information criterion [J].
Neath, AA ;
Cavanaugh, JE .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (03) :559-580
[29]   GENERALIZED LINEAR MODELS [J].
NELDER, JA ;
WEDDERBURN, RW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1972, 135 (03) :370-+
[30]   AUTOMATIC SMOOTHING OF REGRESSION-FUNCTIONS IN GENERALIZED LINEAR-MODELS [J].
OSULLIVAN, F ;
YANDELL, BS ;
RAYNOR, WJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (393) :96-103