Bayesian information criteria and smoothing parameter selection in radial basis function networks

被引:73
作者
Konishi, S
Ando, T
Imoto, S
机构
[1] Kyushu Univ, Grad Sch Math, Higashi Ku, Fukuoka 8128581, Japan
[2] Univ Tokyo, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
关键词
Bayes approach; maximum penalised likelihood; model selection; neural network; nonlinear regression;
D O I
10.1093/biomet/91.1.27
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
By extending Schwarz's (1978) basic idea we derive a Bayesian information criterion which enables us to evaluate models estimated by the maximum penalised likelihood method or the method of regularisation. The proposed criterion is applied to the choice of smoothing parameters and the number of basis functions in radial basis function network models. Monte Carlo experiments were conducted to examine the performance of the nonlinear modelling strategy of estimating the weight parameters by regularisation and then determining the adjusted parameters by the Bayesian information criterion. The simulation results show that our modelling procedure performs well in various situations.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 43 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[2]  
ANDO T, 2001, JAPANESE J APPL STAT, V30, P19
[3]   Robust full Bayesian learning for radial basis networks [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A .
NEURAL COMPUTATION, 2001, 13 (10) :2359-2407
[4]  
Bishop C. M., 1996, Neural networks for pattern recognition
[5]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[6]   JEFFREYS PRIOR IS ASYMPTOTICALLY LEAST FAVORABLE UNDER ENTROPY RISK [J].
CLARKE, BS ;
BARRON, AR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (01) :37-60
[7]  
DAVISON AC, 1986, BIOMETRIKA, V73, P323
[9]   NONPARAMETRIC ROUGHNESS PENALTIES FOR PROBABILITY DENSITIES [J].
GOOD, IJ ;
GASKINS, RA .
BIOMETRIKA, 1971, 58 (02) :255-+
[10]  
GREEN P, 1985, LECTURE NOTES STATIS, V32, P44