REMARKS ON LEVI HARMONICITY OF CONTACT SEMI-RIEMANNIAN MANIFOLDS

被引:4
作者
Perrone, Domenico [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Italy
关键词
almost contact semi-Riemannian manifold; phi-condition; CR map; invariant submanifold; Levi harmonicity; Levi pluriharmonicity; MAPS;
D O I
10.4134/JKMS.2014.51.5.881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper [10] we introduced the notion of Levi harmonic map f from an almost contact semi-Riemannian manifold (M, phi, xi, eta, g) into a semi-Riemannian manifold M'. In particular, we computed the tension field T-H(f) for a CR map f between two almost contact semi-Riemannian manifolds satisfying the so-called phi-condition, where H = Ker(eta) is the Levi distribution. In the present paper we show that the condition (A) of Rawnsley [17] is related to the phi-condition. Then, we compute the tension field T-H (f) for a CR map between two arbitrary almost contact semi-Riemannian manifolds, and we study the concept of Levi pluriharmonicity. Moreover, we study the harmonicity on quasi-cosymplectic manifolds.
引用
收藏
页码:881 / 895
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 2002, RIEMANNIAN GEOMETRY
[2]  
[Anonymous], 1993, Int. J. Math. Math. Sci., DOI DOI 10.1155/S0161171293000675
[3]  
Baird P., 2003, London Math. Soc. Monogr. (N.S.), V29
[4]  
Barletta E, 2001, INDIANA U MATH J, V50, P719
[5]   INDEFINITE KAHLER-MANIFOLDS [J].
BARROS, M ;
ROMERO, A .
MATHEMATISCHE ANNALEN, 1982, 261 (01) :55-62
[6]   Contact pseudo-metric manifolds [J].
Calvaruso, Giovanni ;
Perrone, Domenico .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (05) :615-634
[7]  
Capursi M., 1987, REV ROUMAINE MATH PU, V32, P27
[8]  
Davidov J, 2003, HOUSTON J MATH, V29, P639
[9]  
Dragomir S, 2011, HARMONIC VECTOR FIEL
[10]   Levi Harmonic Maps of Contact Riemannian Manifolds [J].
Dragomir, Sorin ;
Perrone, Domenico .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) :1233-1275