Stabilizability of fractional dynamical systems

被引:19
作者
Balachandran, Krishnan [1 ]
Govindaraj, Venkatesan [1 ]
Rodriguez-Germa, Luis [1 ]
Trujillo, Juan J. [1 ]
机构
[1] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
关键词
controllability; observability; stability; fractional differential equations; Mittag-Leffler matrix function; MIMO systems; RELATIVE-CONTROLLABILITY; STABILITY; DELAYS;
D O I
10.2478/s13540-014-0183-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish that the controllability and observability properties of fractional dynamical systems in a finite dimensional space are dual. Using this duality result and the Mittag-Leffler matrix function, we propose the stabilizability of fractional MIMO (Multiple-input Multipleoutput) systems. Some numerical examples are provided to show the effectiveness of the obtained results.
引用
收藏
页码:511 / 531
页数:21
相关论文
共 34 条
[1]   Finite-Time Controllability of Fractional-order Systems [J].
Adams, Jay L. ;
Hartley, Tom T. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (02)
[2]  
[Anonymous], 1998, ESAIM P SYSTEMES DIF
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Observability of Nonlinear Fractional Dynamical Systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rivero, M. ;
Tenreiro Machado, J. A. ;
Trujillo, J. J. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[6]   Controllability of nonlinear higher order fractional dynamical systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
NONLINEAR DYNAMICS, 2013, 71 (04) :605-612
[7]   Controllability Results for Nonlinear Fractional-Order Dynamical Systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) :33-44
[8]   Relative controllability of fractional dynamical systems with distributed delays in control [J].
Balachandran, K. ;
Zhou, Yong ;
Kokila, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3201-3209
[9]   Relative controllability of fractional dynamical systems with multiple delays in control [J].
Balachandran, K. ;
Kokila, J. ;
Trujillo, J. J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3037-3045
[10]   Relative controllability of fractional dynamical systems with delays in control [J].
Balachandran, K. ;
Zhou, Yong ;
Kokila, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (09) :3508-3520