Asymptotic stability and instability of the solutions of systems with impulse action

被引:24
作者
Ignat'ev, A. O. [1 ]
Ignat'ev, O. A.
Soliman, A. A.
机构
[1] Natl Acad Sci Ukraine, Inst Appl Math & Mech, Donetsk, Ukraine
[2] Kent State Univ, Kent, OH 44242 USA
[3] Benha Univ, Kalubia, Egypt
关键词
differential equation with impulse action; dynamical system with discontinuous trajectories; asymptotic stability; Lyapunov function;
D O I
10.1007/s11006-006-0167-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the stability of the zero solution of a system of ordinary differential equations subject to impulse action. Using the method of Lyapunov functions, we obtain tests for asymptotic stability or instability of the system. Illustrative examples are given.
引用
收藏
页码:491 / 499
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1940, B SOC PHY MATH KAZAN
[2]  
Bainov D.D., 1989, Systems with Impulse Effect
[3]  
BOICHUK AA, 1991, DIFF URAVN, V27, P1516
[4]   Investigations of the properties motion for essential nonlinear systems perturbed by impulses on some hypersurfaces [J].
Borysenko, SD ;
Iovane, G ;
Giordano, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (02) :345-363
[5]   Discontinuous impulsive differential equations with nonlinear boundary conditions [J].
Cabada, A ;
Liz, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (09) :1491-1497
[6]  
Gladilina R.I., 2003, UKR MAT ZH, V55, P1035
[7]  
GLADILINA RI, 2004, MAT ZAMETKI, V76, P44, DOI 10.4213/mzm89
[8]  
Gurgula S., 1982, MAT FIZ, V31, P9
[9]   PERIODIC BOUNDARY-VALUE PROBLEMS FOR 2ND ORDER IMPULSIVE DIFFERENTIAL-SYSTEMS [J].
HU, S ;
LAKSHMIKANTHAM, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (01) :75-85
[10]  
IGNATEV AO, 2003, MAT SBORNIK, V194, P117