Multiobjective search algorithm with subdivision technique

被引:39
作者
Jahn, Johannes [1 ]
机构
[1] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany
关键词
global optimization; vector optimization; random search;
D O I
10.1007/s10589-006-6450-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a multiobjective search algorithm with subdivision technique (MOSAST) for the global solution of multiobjective constrained optimization problems with possibly noncontinuous objective or constraint functions. This method is based on a random search method and a new version of the Graef-Younes algorithm and it uses a subdivision technique. Numerical results are given for bicriterial test problems.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
[Anonymous], COMMUNICATION
[3]  
[Anonymous], GLOBAL OPTIMIZATION
[4]  
[Anonymous], 2004, MULTIOBJECTIVE OPTIM, DOI DOI 10.1007/978-3-662-08883-8
[5]  
[Anonymous], THESIS U DEMIATTA EG
[6]  
Deb K., 2001, Multi-Objective Optimization using Evolutionary Algorithms
[7]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16
[8]  
FONSECA CM, 2003, EVOLUTIONARY MULTICR
[9]   Synergy of HVAC and fire research [J].
Hill, JE .
HVAC&R RESEARCH, 2005, 11 (01) :1-2
[10]  
Jahn J., 2004, VECTOR OPTIMIZATION