Semiclassical calculation of the C operator in PT-symmetric quantum mechanics

被引:41
作者
Bender, CM [1 ]
Jones, HF [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.physleta.2004.05.063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To determine the Hilbert space and inner product for a quantum theory defined by a non-Hermitian PT-symmetric Hamiltonian H, it is necessary to construct a new time-independent observable operator called C. It has recently been shown that for the cubic DT-symmetric Hamiltonian H = p(2) + x(2) + iis an element ofx(3) one can obtain C as a perturbation expansion in powers of is an element of. This Letter considers the more difficult case of noncubic Hamiltonians of the form H = p(2) + x(2) (ix)(delta) (delta greater than or equal to 0). For these Hamiltonians it is shown how to calculate C by using nonperturbative semiclassical methods. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 22 条
  • [1] Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians
    Ahmed, Z
    [J]. PHYSICS LETTERS A, 2002, 294 (5-6) : 287 - 291
  • [2] Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework
    Bagchi, B
    Quesne, C
    [J]. PHYSICS LETTERS A, 2002, 300 (01) : 18 - 26
  • [3] Complex extension of quantum mechanics
    Bender, CM
    Brody, DC
    Jones, HF
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (27)
  • [4] Must a Hamiltonian be Hermitian?
    Bender, CM
    Brody, DC
    Jones, HF
    [J]. AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) : 1095 - 1102
  • [5] Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics
    Bender, CM
    Meisinger, PN
    Wang, QH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : 1973 - 1983
  • [6] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [7] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [8] Quantum complex Henon-Heiles potentials
    Bender, CM
    Dunne, GV
    Meisinger, PN
    Simsek, M
    [J]. PHYSICS LETTERS A, 2001, 281 (5-6) : 311 - 316
  • [9] Bender CM, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.085001
  • [10] BENDER CM, HEPTH0402011