Semiclassical calculation of the C operator in PT-symmetric quantum mechanics

被引:41
作者
Bender, CM [1 ]
Jones, HF [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.physleta.2004.05.063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To determine the Hilbert space and inner product for a quantum theory defined by a non-Hermitian PT-symmetric Hamiltonian H, it is necessary to construct a new time-independent observable operator called C. It has recently been shown that for the cubic DT-symmetric Hamiltonian H = p(2) + x(2) + iis an element ofx(3) one can obtain C as a perturbation expansion in powers of is an element of. This Letter considers the more difficult case of noncubic Hamiltonians of the form H = p(2) + x(2) (ix)(delta) (delta greater than or equal to 0). For these Hamiltonians it is shown how to calculate C by using nonperturbative semiclassical methods. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 22 条
[1]   Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians [J].
Ahmed, Z .
PHYSICS LETTERS A, 2002, 294 (5-6) :287-291
[2]   Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2002, 300 (01) :18-26
[3]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[4]   Must a Hamiltonian be Hermitian? [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) :1095-1102
[5]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[8]   Quantum complex Henon-Heiles potentials [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN ;
Simsek, M .
PHYSICS LETTERS A, 2001, 281 (5-6) :311-316
[9]  
Bender CM, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.085001
[10]  
BENDER CM, HEPTH0402011