Whittaker modules for the affine Lie algebra A1(1)

被引:53
|
作者
Adamovic, Drazen [1 ]
Lu, Rencai [2 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Univ Zagreb, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] Soochow Univ, Dept Math, Suzhou, Peoples R China
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[4] Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Wakimoto modules; Whittaker modules; Critical level; Virasoro algebra; INTEGRABLE REPRESENTATIONS; HEISENBERG; VECTORS; FINITE;
D O I
10.1016/j.aim.2015.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the irreducibility of the universal non-degenerate Whittaker modules for the affine Lie algebra s (1) over tilde (2) of type A(1)((1)) with noncritical level. These modules can become simple Whittaker modules over s (1) over tilde (2) = s (1) over tilde (2) Cd with the same Whittaker function and central charge. We have to modulo a central character for s (1) over tilde (2) to obtain simple degenerate Whittaker 42-modules with noncritical level. In the case of critical level the universal Whittaker module is reducible. We prove that the quotient of universal Whittaker s (1) over tilde (2)-module by a submodule generated by a scalar action of central elements.of the vertex algebra V-2(s (1) over tilde (2) ) is simple as s (1) over tilde (2)-module. We also explicitly describe the simple quotients of universal Whittaker modules at the critical level for s (1) over tilde (2). Quite surprisingly, with the same Whittaker function some simple degenerate s (1) over tilde (2) Whittaker modules at the critical level have semisimple action of d and others have free action of d. At last, by using vertex algebraic techniques we present a Wakimoto type construction of a family of simple generalized Whittaker modules for s (1) over tilde (2) at the critical level. This family includes all classical Whittaker modules at critical level. We also have Wakimoto type realization for degenerate Whittaker modules for s (1) over tilde (2) at noncritical level. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 479
页数:42
相关论文
共 50 条
  • [1] ON PRINCIPAL REALIZATION OF MODULES FOR THE AFFINE LIE ALGEBRA A1(1) AT THE CRITICAL LEVEL
    Adamovic, Drazen
    Jing, Naihuan
    Misra, Kailash C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) : 5113 - 5136
  • [2] AFFINE LIE ALGEBRA REPRESENTATIONS INDUCED FROM WHITTAKER MODULES
    Cardoso, Maria Clara
    Futorny, Vyacheslav
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1041 - 1053
  • [3] Realizations of Affine Lie Algebra A1(1) at Negative Levels
    Dong, Jilan
    Jing, Naihuan
    ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 603 - 616
  • [4] Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras
    Christodoulopoulou, Konstantina
    JOURNAL OF ALGEBRA, 2008, 320 (07) : 2871 - 2890
  • [5] Whittaker modules for a Lie algebra of Block type
    Wang, Bin
    Zhu, Xinyun
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 731 - 744
  • [6] Whittaker modules for a Lie algebra of Block type
    Bin Wang
    Xinyun Zhu
    Frontiers of Mathematics in China, 2011, 6 : 731 - 744
  • [7] A new class of simple smooth modules over the affine algebra A1(1)
    Nguyen, Khoa
    Xue, Yaohui
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2024, 658 : 728 - 747
  • [8] Whittaker modules and quasi-Whittaker modules for the Euclidean Lie algebra e(3)
    Cai, Yan-an
    Shen, Ran
    Zhang, Jiangang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1419 - 1433
  • [9] Mixed expansion formula for the rectangular Schur functions and the affine Lie algebra A1(1)
    Ikeda, Takeshi
    Mizukawa, Hiroshi
    Nakajima, Tatsuhiro
    Yamada, Hiro-Fumi
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (04) : 514 - 535
  • [10] Whittaker Modules for the Insertion-Elimination Lie Algebra
    Ondrus, Matthew
    Wiesner, Emilie
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (04) : 843 - 856