Tumor-immune system interaction: Modeling the tumor-stimulated proliferation of effectors and immunotherapy

被引:63
作者
D'Onofrio, A. [1 ]
机构
[1] European Inst Oncol, Div Epidemiol & Biostat, I-20141 Milan, Italy
关键词
tumor; immune system; interacting populations; therapies; limit cycles;
D O I
10.1142/S0218202506001571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tumoral dynamics and antitumor immunotherapies are likely to be influenced by the modalities of interaction between tumor cells and immune system effectors, and by the inter-effectors interactions. Within the framework of the theory of competing populations, we study here the influence of the proliferation response of effectors to tumor burden, and of cooperation and/or competition between immune system effectors, by means of three inter-related bi-dimensional meta-models. After studying their null-clines, we study the location and the local stability of the equilibria. Then, we investigate the existence and, in some cases, the uniqueness of stable limit cycles. The condition for the global asymptotically stable eradication under constant or slightly variable periodic immunotherapy is given. Finally, implications of strong saturation in the effectors ability to kill tumor cells are discussed.
引用
收藏
页码:1375 / 1401
页数:27
相关论文
共 49 条
[1]  
AGARWALA SA, 2003, SEM ONCOLOGY S, V7
[2]  
Alberts B., 2005, MOL BIOL CELL
[3]  
[Anonymous], 1988, Mathematical models in cancer research
[4]  
Bell G.I., 1973, Mathematical Biosci, V16, P291, DOI 10.1016/0025-5564(73)90036-9
[5]  
Bellomo N, 2005, MATH MOD METH APPL S, V15, pIII
[6]   Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition [J].
Bellomo, N ;
Bellouquid, A ;
Delitala, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (11) :1683-1733
[7]   Modelling and mathematical problems related to tumor evolution and its interaction with the immune system [J].
Bellomo, N ;
Preziosi, L .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (3-4) :413-452
[8]   Mathematical methods and tools of kinetic theory towards modelling complex biological systems [J].
Bellouquid, A ;
Delitala, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1639-1666
[9]   Immunotherapy for renal cell carcinoma [J].
Bleumer, I ;
Oosterwijk, E ;
De Mulder, P ;
Mulders, PFA .
EUROPEAN UROLOGY, 2003, 44 (01) :65-75
[10]   European Code Against Cancer and scientific justification: third version (2003) [J].
Boyle, P ;
Autier, P ;
Bartelink, H ;
Baselga, J ;
Boffetta, P ;
Burn, J ;
Burns, HJG ;
Christensen, L ;
Denis, L ;
Dicato, M ;
Diehl, V ;
Doll, R ;
Franceschi, S ;
Gillis, CR ;
Gray, N ;
Griciute, L ;
Hackshaw, A ;
Kasler, M ;
Kogevinas, M ;
Kvinnsland, S ;
La Vecchia, C ;
Levi, F ;
McVie, JG ;
Maisonneuve, P ;
Martin-Moreno, JM ;
Bishop, JN ;
Oleari, F ;
Perrin, P ;
Quinn, M ;
Richards, M ;
Ringborg, U ;
Scully, C ;
Siracka, E ;
Storm, H ;
Tubiana, M ;
Tursz, T ;
Veronesi, U ;
Wald, N ;
Weber, W ;
Zaridze, DG ;
Zatonski, W ;
zur Hausen, H .
ANNALS OF ONCOLOGY, 2003, 14 (07) :973-1005