Characterizations of the harmonic Bergman space on the ball

被引:6
作者
Choi, Eun Sun [2 ]
Na, Kyunguk [1 ]
机构
[1] Hanshin Univ, Gyeonggi 447791, South Korea
[2] Korea Univ, Dept Math, Seoul 136701, South Korea
关键词
Harmonic Bergman space; Hyperbolic metric; Lipschitz condition;
D O I
10.1016/j.jmaa.2008.11.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the harmonic Bergman space with the normal weight, we prove norm equivalences in terms of radial, gradient and invariant gradient norms. Using this, we give new characterizations in terms of Lipschitz type conditions with Euclidean, pseudo-hyperbolic and hyperbolic metrics on the ball. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:375 / 385
页数:11
相关论文
共 7 条
[1]  
Ahlfors LV., 1981, MOBIUS TRANSFORMATIO
[2]  
Axler S., 1992, Harmonic function theory
[3]  
Choe B. R., 2007, OCAMI STUDIES, V2, P11
[4]   Positive Schatten class Toeplitz operators on the ball [J].
Choe, Boo Rim ;
Koo, Hyungwoon ;
Lee, Young Joo .
STUDIA MATHEMATICA, 2008, 189 (01) :65-90
[5]   Derivatives of harmonic Bergman and Bloch functions on the ball [J].
Choe, BR ;
Koo, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :100-123
[6]   Harmonic Bergman functions on the unit ball in Rn [J].
Jevtic, M ;
Pavlovic, M .
ACTA MATHEMATICA HUNGARICA, 1999, 85 (1-2) :81-96
[7]  
WULAN H, CANADIAN MA IN PRESS