Optimal Guidance of the Isotropic Rocket in the Presence of Wind

被引:19
作者
Bakolas, Efstathios [1 ]
机构
[1] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
关键词
Isotropic rocket; Optimal control; Guidance; Pontryagin's minimum principle; POINT MASS; OBJECT; VEHICLE;
D O I
10.1007/s10957-013-0504-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We address the minimum-time guidance problem for the so-called isotropic rocket in the presence of wind under an explicit constraint on the acceleration norm. We consider the guidance problem to a prescribed terminal position and a circular target set with a free terminal velocity in both cases. We employ standard techniques from optimal control theory to characterize the structure of the optimal guidance law as well as the corresponding minimum time-to-go function. It turns out that the complete characterization of the solution to the optimal control problem reduces to the solution of a system of nonlinear equations in triangular form. Numerical simulations, that illustrate the theoretical developments, are presented.
引用
收藏
页码:954 / 974
页数:21
相关论文
共 32 条
[1]   The time-optimal transfer of a perturbed dynamical object to a given position [J].
Akulenko, L. D. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2008, 72 (02) :136-143
[2]   Time-optimal steering of a point mass to a specified position with the required velocity [J].
Akulenko, L. D. ;
Koshelev, A. P. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2007, 71 (02) :200-207
[3]   Time-optimal steering of an object moving in a viscous medium to a desired phase state [J].
Akulenko, L. D. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2011, 75 (05) :534-538
[4]   The quickest transfer of a spatial dynamic object into a circular domain [J].
Akulenko, L. D. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2011, 75 (03) :323-333
[5]   Time-optimal steering of a point mass onto the surface of a sphere at zero velocity [J].
Akulenko, LD ;
Shmatkov, AM .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2002, 66 (01) :9-21
[6]   Analytical method for solution of the game problem of soft landing for moving objects [J].
Albus J. ;
Meystel A. ;
Chikrii A.A. ;
Belousov A.A. ;
Kozlov A.I. .
Cybernetics and Systems Analysis, 2001, 37 (1) :75-91
[7]  
Anderson R., 2012, P 51 IEEE C DEC CONT
[8]   Optimal Feedback Guidance of a Small Aerial Vehicle in a Stochastic Wind [J].
Anderson, Ross P. ;
Bakolas, Efstathios ;
Milutinovic, Dejan ;
Tsiotras, Panagiotis .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (04) :975-985
[9]  
[Anonymous], 1969, Applied Optimal Control
[10]  
[Anonymous], AUTOMAT REMOTE CONTR