Fourier transform and the Verlinde formula for the quantum double of a finite group

被引:16
作者
Koornwinder, TH
Schroers, BJ
Slingerland, JK
Bais, FA
机构
[1] Univ Amsterdam, KdV Inst Math, NL-1018 TV Amsterdam, Netherlands
[2] Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 48期
关键词
D O I
10.1088/0305-4470/32/48/313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a Fourier transform S for the quantum double D(G) of a finite group G. Acting on characters of D(G), S and the central ribbon element of D(G) generate a unitary matrix representation of the group SL(2, Z). The characters form a ring over the integers under both the algebra multiplication and its dual, with the latter encoding the fusion rules of D(G). The Fourier transform relates the two ring structures. We use this to give a particularly short proof of the Verlinde formula for the fusion coefficients.
引用
收藏
页码:8539 / 8549
页数:11
相关论文
共 24 条
[1]   QUANTUM SYMMETRIES IN DISCRETE GAUGE-THEORIES [J].
BAIS, FA ;
VANDRIEL, P ;
PROPITIUS, MD .
PHYSICS LETTERS B, 1992, 280 (1-2) :63-70
[2]  
BESPALOV Y, 1997, QALG9709020
[3]  
Chari V., 1994, QUANTUM GROUPS
[4]   Remarks on quantum integration [J].
Chryssomalakos, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (01) :1-25
[5]  
de Propitius M. W., 1999, PARTICLES FIELDS, P353
[6]   THE OPERATOR ALGEBRA OF ORBIFOLD MODELS [J].
DIJKGRAAF, R ;
VAFA, C ;
VERLINDE, E ;
VERLINDE, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (03) :485-526
[7]  
Dijkgraaf R., 1990, NUCL PHYS B S, V18B, P60, DOI DOI 10.1016/0920-5632(91)90123-V
[8]  
Drinfel'd V. G., 1987, P INT C MATHEMATICIA, V1, P798
[9]   FUSION RULES IN CONFORMAL FIELD-THEORY [J].
FUCHS, J .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1994, 42 (01) :1-48
[10]   RATIONAL HOPF-ALGEBRAS - POLYNOMIAL EQUATIONS, GAUGE-FIXING, AND LOW-DIMENSIONAL EXAMPLES [J].
FUCHS, J ;
GANCHEV, A ;
VECSERNYES, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (24) :3431-3476