Direct writing of graphene patterns on insulating substrates under ambient conditions

被引:66
作者
Xiong, Wei [1 ]
Zhou, Yun Shen [1 ]
Hou, Wen Jia [1 ]
Jiang, Li Jia [1 ]
Gao, Yang [1 ]
Fan, Li Sha [1 ]
Jiang, Lan [2 ]
Silvain, Jean Francois [3 ]
Lu, Yong Feng [1 ]
机构
[1] Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA
[2] Beijing Inst Technol, Dept Mech & Automat Engn, Beijing 100081, Peoples R China
[3] ICMCB CNRS 87, Inst Chem Condensed Matter Bordeaux, F-33608 Pessac, France
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
美国国家科学基金会;
关键词
TRANSPORT; FILMS;
D O I
10.1038/srep04892
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To unleash the full potential of graphene in electronics and optoelectronics, high-quality graphene patterns on insulating substrates are required. However, existing methods generally follow a "synthesis + patterning'' strategy, which are time consuming and costly for fabricating high-quality graphene patterns on desired substrates. We developed a nanofabrication process to deposit high-quality graphene patterns directly on insulating substrates via a solid-phase laser direct writing (LDW) process. Open-air and room-temperature fabrication of graphene patterns on insulating substrates has been achieved via a femtosecond LDW process without graphene transfer and patterning. Various graphene patterns, including texts, spirals, line arrays, and integrated circuit patterns, with a feature line width of 800 nm and a low sheet resistance of 205 ohm/sq, were fabricated. The LDW method provides a facile and cost-effective way to fabricate complex and high-quality graphene patterns directly on target substrates, which opens a door for fabricating various advanced functional devices.
引用
收藏
页数:6
相关论文
共 40 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[3]   Femtosecond laser ablation properties of borosilicate glass [J].
Ben-Yakar, A ;
Byer, RL .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (09) :5316-5323
[4]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[5]   Quantifying pulsed laser induced damage to graphene [J].
Currie, Marc ;
Caldwell, Joshua D. ;
Bezares, Francisco J. ;
Robinson, Jeremy ;
Anderson, Travis ;
Chun, Hayden ;
Tadjer, Marko .
APPLIED PHYSICS LETTERS, 2011, 99 (21)
[6]   NUMERICAL-ANALYSIS OF VARIOUS CROSS SHEET RESISTOR TEST STRUCTURES [J].
DAVID, JM ;
BUEHLER, MG .
SOLID-STATE ELECTRONICS, 1977, 20 (06) :539-543
[7]   Partially oxidized graphene as a precursor to graphene [J].
Eda, Goki ;
Ball, James ;
Mattevi, Cecilia ;
Acik, Muge ;
Artiglia, Luca ;
Granozzi, Gaetano ;
Chabal, Yves ;
Anthopoulos, Thomas D. ;
Chhowalla, Manish .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (30) :11217-11223
[8]   Carrier statistics and quantum capacitance of graphene sheets and ribbons [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 91 (09)
[9]   Detection of a Prognostic Indicator in Early-Stage Cancer Using Functionalized Graphene-Based Peptide Sensors [J].
Feng, Lingyan ;
Wu, Li ;
Wang, Jiasi ;
Ren, Jinsong ;
Miyoshi, Daisuke ;
Sugimoto, Naoki ;
Qu, Xiaogang .
ADVANCED MATERIALS, 2012, 24 (01) :125-+
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)