Waypoint-based mobile robot navigation

被引:0
作者
Mulvaney, David [1 ]
Wang, Yang [1 ]
Sillitoe, Ian [2 ]
机构
[1] Loughborough Univ Technol, Dept Elect & Elect Engn, Loughborough LE11 3TU, Leics, England
[2] Univ Boras, Sch Engn, S-50190 Boras, Sweden
来源
WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS | 2006年
关键词
robot navigation; genetic algorithms; decision trees;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel robot navigation method is presented that acquires waypoints during reactive exploration for use by a deliberative system in planning future movements through the same environment. A range of methods could be used for either the reactive or deliberative navigation, but, in the current work, an incremental decision tree method is used to navigate the robot reactively from the specified initial position to its destination and a genetic algorithm method is used to perform the deliberative navigation. In contrast with many deliberative approaches, the new method does not require complete prior knowledge of the environment, it is not necessary to make assumptions regarding the geometry of obstacles and it is always possible to revert to reactive navigation in unknown or changing environments or when time constraints are particularly demanding.
引用
收藏
页码:137 / 137
页数:1
相关论文
共 50 条
[31]   Autonomous navigation of a nonholonomic mobile robot in a complex environment [J].
Kokosy, Annemarie ;
Defaux, Franck-Olivier ;
Perruquetti, Wilfrid .
2008 IEEE INTERNATIONAL WORKSHOP ON SAFETY, SECURITY & RESCUE ROBOTICS, 2008, :102-+
[32]   Optimised fuzzy logic controller for a mobile robot navigation [J].
Jallouli, M. ;
Rekik, C. ;
Chtourou, M. ;
Derbel, N. .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2010, 9 (04) :400-408
[33]   Deep Reinforcement Learning of Map-Based Obstacle Avoidance for Mobile Robot Navigation [J].
Chen G. ;
Pan L. ;
Chen Y. ;
Xu P. ;
Wang Z. ;
Wu P. ;
Ji J. ;
Chen X. .
SN Computer Science, 2021, 2 (6)
[34]   Dead-reckoning/vision integrated navigation for mobile robot [J].
孙德波 .
Journal of Harbin Institute of Technology, 2003, (02) :145-150
[35]   Landmark recognition for mobile robot navigation using polar histograms [J].
Suau, P ;
Rizo, R ;
Pujol, M .
Proceedings of the Fourth IASTED International Conference on Visualization, Imaging, and Image Processing, 2004, :324-328
[36]   DESIGN AND SIMULATION OF A MOBILE ROBOT PLATFORM FOR NAVIGATION AND OBSTACLE DETECTION [J].
Azeta, Joseph ;
Bolu, Christian A. ;
Oyawale, Festus A. .
ENGINEERING REVIEW, 2022, 42 (01) :56-65
[37]   RSSI-based Mobile Robot Navigation In Grid-pattern Wireless Sensor Network [J].
Zhou, Nan ;
Zhao, Xiaoguang ;
Tan, Min .
2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, :497-501
[38]   Simulation of Mobile Robot Navigation with Sensor Fusion on an Uneven Path [J].
Sumanarathna, D. M. G. A. I. N. ;
Senevirathna, I. A. S. R. ;
Sirisena, K. L. U. ;
Sandamali, H. G. N. ;
Pillai, M. Branesh ;
Abeykoon, A. M. Harsha S. .
2014 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2014), 2014, :388-393
[39]   Navigation of Self-Balancing Mobile Robot through Sensors [J].
Pajaziti, Arbnor ;
Gara, Lorik .
IFAC PAPERSONLINE, 2019, 52 (25) :429-434
[40]   An Approach in Designing Hierarchy of Fuzzy Behaviors for Mobile Robot Navigation [J].
Long Thanh Ngo ;
Long The Pham ;
Phuong Hoang Nguyen ;
Hirota, Kaoru .
JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2007, 11 (03) :268-275