A separated form of Nose dynamics for constant temperature and pressure simulation

被引:6
作者
Leimkuhler, B [1 ]
机构
[1] Univ Leicester, Ctr Math Modelling, Leicester LE1 7RH, Leics, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Andersen constant pressure method; Nose thermostat; molecular dynamics; Hamiltonian systems; symplectic integrators;
D O I
10.1016/S0010-4655(02)00554-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an alternative framework for constant temperature and pressure simulation of particle systems based on a reformulation of Nose's thermostat. By mapping Nose and Nose-Andersen dynamics to a Hamiltonian formulation with a constant kinetic energy metric, the approach provides a more intuitive perspective on the nature of extended variable molecular dynamics and potentially simplifies the construction of symplectic methods. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 22 条
[1]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[2]  
[Anonymous], 1991, PROG THEOR PHYS SUPP, DOI [DOI 10.1143/PTPS.103.1, DOI 10.1143/PTP.103.1]
[3]   ON THE HAMILTONIAN INTERPOLATION OF NEAR-TO-THE-IDENTITY SYMPLECTIC MAPPINGS WITH APPLICATION TO SYMPLECTIC INTEGRATION ALGORITHMS [J].
BENETTIN, G ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1117-1143
[4]   The Nose-Poincare method for constant temperature molecular dynamics [J].
Bond, SD ;
Leimkuhler, BJ ;
Laird, BB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :114-134
[5]   CONSTANT-TEMPERATURE MOLECULAR-DYNAMICS WITH MOMENTUM CONSERVATION [J].
CHO, K ;
JOANNOPOULOS, JD ;
KLEINMAN, L .
PHYSICAL REVIEW E, 1993, 47 (05) :3145-3151
[6]   Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics [J].
Dettmann, CP ;
Morriss, GP .
PHYSICAL REVIEW E, 1997, 55 (03) :3693-3696
[7]   TIME-REVERSIBLE EQUILIBRIUM AND NONEQUILIBRIUM ISOTHERMAL-ISOBARIC SIMULATIONS WITH CENTERED-DIFFERENCE STOERMER ALGORITHMS [J].
HOLIAN, BL ;
DEGROOT, AJ ;
HOOVER, WG ;
HOOVER, CG .
PHYSICAL REVIEW A, 1990, 41 (08) :4552-4553
[8]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[9]   Simple reversible molecular dynamics algorithms for Nose-Hoover chain dynamics [J].
Jang, S ;
Voth, GA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (22) :9514-9526
[10]   A reversible averaging integrator for multiple time-scale dynamics [J].
Leimkuhler, B ;
Reich, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) :95-114