Deformation Theory of Periodic Monopoles (With Singularities)

被引:8
作者
Foscolo, Lorenzo [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
YANG-MILLS FIELDS; INDEX THEOREM; LOCAL THEORY; 3-MANIFOLDS; SPACES;
D O I
10.1007/s00220-015-2497-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cherkis and Kapustin (Commun Math Phys 218(2): 333-371, 2001 and Commun Math Phys 234(1):1-35, 2003) introduced periodic monopoles (with singularities), i.e. monopoles on possibly singular at a finite collection of points. In this paper we show that for generic choices of parameters the moduli spaces of periodic monopoles (with singularities) with structure group are either empty or smooth hyperkahler manifolds. Furthermore, we prove an index theorem and therefore compute the dimension of the moduli spaces.
引用
收藏
页码:351 / 390
页数:40
相关论文
共 40 条
[1]  
Anghel N, 1993, Geom. Funct. Anal., V3, P431
[2]  
[Anonymous], 1998, CLASSICS MATH
[3]  
[Anonymous], ANN SCUOLA NORM SUP
[4]  
Atiyah M.F., 1984, Collected works, V5*, P1
[5]   Wild non-abelian Hodge theory on curves [J].
Biquard, O ;
Boalch, P .
COMPOSITIO MATHEMATICA, 2004, 140 (01) :179-204
[6]   STABLE PARABOLIC BUNDLES AND FLAT SINGULAR CONNECTIONS [J].
BIQUARD, O .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :231-257
[7]  
Biquard O., 2001, J EUR MATH SOC, V3, P335
[8]  
Biquard Olivier., 1992, International Journal of Mathematics, V3, P441
[9]  
BRAAM PJ, 1989, J DIFFER GEOM, V30, P425
[10]  
BRAAM PJ, 1995, PROG MATH, V133, P195