Remarks on global regularity for the 3D MHD system with damping

被引:14
作者
Zhang, Zujin [1 ]
Wu, Chupeng [1 ]
Yao, Zheng-An [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
MHD equations; Navier-Stokes system; Damping; Strong solutions; NAVIER-STOKES EQUATIONS; UNIQUENESS CRITERION; WEAK SOLUTIONS;
D O I
10.1016/j.amc.2018.03.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy problem for the 3D MHD system with damping terms vertical bar u vertical bar(alpha-1) u and vertical bar b vertical bar(ss-1) b (alpha, ss >= 1), and show that the strong solution exists globally and uniquely if one of the following four conditions holds, (1) 3 <= alpha <= 27/8, ss >= 4; (2) 27/8 < alpha <= 7/2, ss >= 7/2 alpha-5; (3) 7/2 < alpha< 4, ss= 5 alpha+ 7/2 alpha; (4) alpha >= 4, ss >= 1. This improves the previous results significantly. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 10 条
[1]   Weak and strong solutions for the incompressible Navier-Stokes equations with damping [J].
Cai, Xiaojing ;
Jiu, Quansen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :799-809
[2]   Note on the weak-strong uniqueness criterion for the β-QG in Morrey-Campanato space [J].
Gala, Saddek ;
Ragusa, Maria Alessandra .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 :65-71
[3]   Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces [J].
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Sawano, Yoshihiro ;
Tanaka, Hitoshi .
APPLICABLE ANALYSIS, 2014, 93 (02) :356-368
[4]   A remark on the regularity criterion of Boussinesq equations with zero heat conductivity [J].
Gala, Sadek ;
Guo, Zhengguang ;
Ragusa, Maria Alessandra .
APPLIED MATHEMATICS LETTERS, 2014, 27 :70-73
[5]   On the regularity of weak solutions to the magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :235-254
[6]   REGULARITY AND DECAY OF 3D INCOMPRESSIBLE MHD EQUATIONS WITH NONLINEAR DAMPING TERMS [J].
Ye, Zhuan .
COLLOQUIUM MATHEMATICUM, 2015, 139 (02) :185-203
[7]   GLOBAL REGULARITY FOR THE 3D MHD SYSTEM WITH DAMPING [J].
Zhang, Zujin ;
Yang, Xian .
COLLOQUIUM MATHEMATICUM, 2016, 145 (01) :107-110
[8]   On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping [J].
Zhang, Zujin ;
Wu, Xinglong ;
Lu, Ming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :414-419
[9]   Remarks on regularities for the 3D MHD equations [J].
Zhou, Y .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) :881-886
[10]   Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping [J].
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1822-1825