The Research on Signal Modulation Mode Recognition Based on BP Neural Network

被引:0
作者
Jiang, Yu [1 ]
Wang, Yuwen [1 ]
Zhang, Hong [1 ]
机构
[1] UESTC, Chengdu 611731, Si Chuan Provin, Peoples R China
来源
INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENT PROTECTION (ICSEEP 2015) | 2015年
关键词
ALGORITHM;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Based on CCSDS, ESA and NASA's advice, this paper chose seven kinds of modulation method which is commonly used in TT&C, namely, 2FSK, 4FSK, BPSK, QPSK, MSK, PM, and CW. First extracted characteristic parameters of signals, then combined with BP neural network for signal modulation mode recognition. The simulation results show that BPSK, PM, and CW in signal-to-noise ratio between 5 dB to 15 dB's recognition accuracy is 100%.
引用
收藏
页码:878 / 882
页数:5
相关论文
共 5 条
[1]  
Clegg J, 2005, IEEE C EVOL COMPUTAT, P928
[2]  
Nakashima T., 2003, COMP INT ROB AUT IEE, P295
[3]   AUTOMATIC ANALOG MODULATION RECOGNITION [J].
NANDI, AK ;
AZZOUZ, EE .
SIGNAL PROCESSING, 1995, 46 (02) :211-222
[4]   A neural-network learning theory and a polynomial time RBF algorithm [J].
Roy, A ;
Govil, S ;
Miranda, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (06) :1301-1313
[5]  
Wong M.L.D., 2003, SIGNAL PROCESS, V1, P311