Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies

被引:45
作者
Deca, J. [1 ,2 ]
Divin, A. [3 ]
Lapenta, G. [1 ]
Lembege, B. [2 ]
Markidis, S. [4 ]
Horanyi, M. [5 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Ctr Math Plasma Astrophys CmPA, B-3001 Louvain, Belgium
[2] Univ Versailles St Quentin, Lab Atmospheres Milieux Observat Spatiales LATMOS, F-78280 Guyancourt, France
[3] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden
[4] KTH Royal Inst Technol, High Performance Comp & Visualizat HPCViz, SE-10044 Stockholm, Sweden
[5] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA
关键词
SURFACE; PLASMA; FIELDS; MOON; PROSPECTOR;
D O I
10.1103/PhysRevLett.112.151102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code IPIC3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of IPIC3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.
引用
收藏
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 1995, Introduction to space physics, DOI [DOI 10.1017/9781139878296, 10.1017/9781139878296]
[2]   Minimagnetospheres above the Lunar Surface and the Formation of Lunar Swirls [J].
Bamford, R. A. ;
Kellett, B. ;
Bradford, W. J. ;
Norberg, C. ;
Thornton, A. ;
Gibson, K. J. ;
Crawford, I. A. ;
Silva, L. ;
Gargate, L. ;
Bingham, R. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[3]   AN IMPLICIT METHOD FOR ELECTROMAGNETIC PLASMA SIMULATION IN 2 DIMENSIONS [J].
BRACKBILL, JU ;
FORSLUND, DW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (02) :271-308
[4]   How large can the electron to proton mass ratio be in particle-in-cell simulations of unstable systems? [J].
Bret, A. ;
Dieckmann, M. E. .
PHYSICS OF PLASMAS, 2010, 17 (03)
[5]   MAGNETISM AND INTERIOR OF MOON [J].
DYAL, P ;
PARKIN, CW ;
DAILY, WD .
REVIEWS OF GEOPHYSICS, 1974, 12 (04) :568-591
[6]   LUNAR MAGNETISM [J].
FULLER, M .
REVIEWS OF GEOPHYSICS, 1974, 12 (01) :23-70
[7]  
Gubchenko V. M., 1988, Soviet Journal of Plasma Physics, V14, P186
[8]   Quasi-current-free approximation in the electrodynamics of a hot current-carrying collisionless plasma [J].
Gubchenko V.M. ;
Biernat H.K. ;
Goossens M. .
Radiophysics and Quantum Electronics, 2001, 44 (1-2) :72-83
[9]   Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: A mini-magneto sphere? [J].
Halekas, J. S. ;
Delory, G. T. ;
Brain, D. A. ;
Lin, R. P. ;
Mitchell, D. L. .
PLANETARY AND SPACE SCIENCE, 2008, 56 (07) :941-946
[10]   Two-dimensional MHD simulation of the solar wind interaction with magnetic field anomalies on the surface of the Moon [J].
Harnett, EM ;
Winglee, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A11) :24997-25007