Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction

被引:62
作者
Gao, Shuyan [1 ]
Geng, Keran [1 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen reduction reaction; Catalysis; Mn3O4; nanorods; Nitrogen doped carbon coating; LITHIUM ION BATTERIES; MANGANESE OXIDE NANOPARTICLES; NONPRECIOUS METAL CATALYST; WATER OXIDATION; FUEL-CELL; ELECTROCHEMICAL PROPERTIES; ELECTROCATALYTIC ACTIVITY; PLATINUM NANOPARTICLES; ALKALINE-SOLUTIONS; HYBRID MATERIAL;
D O I
10.1016/j.nanoen.2014.02.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese oxide coated with a uniform layer of N-doped carbon (Mn3O4@CNx) is readily synthesized using a simple aqueous solution based chelating agent dicyandiamide mediated growth of MnCO3 followed by calcination at 1000 degrees C. The Mn3O4@CNx can provide sufficient effective three-phase interface area due to the unique structures, which plays the important role in the complex three-phase interface electrocatalytic reaction in oxygen reduction reaction. The electron transfer, from the CNx layer to the Mn ions, is supposed to occur and the high positive charge be generated on the Mn3O4@CNx surface. As a result, these nonprecious hybrid materials display an excellent activity for oxygen reduction reaction in terms of electrocatalytic activity, long-term stability, and excellent resistance to crossover effect. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 69 条
[1]   Impact of loading in RRDE experiments on Fe-N-C catalysts: Two- or four-electron oxygen reduction? [J].
Bonakdarpour, Arman ;
Lefevre, Michel ;
Yang, Ruizhi ;
Jaouen, Frederic ;
Dahn, Tara ;
Dodelet, Jean-Pol ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :B105-B108
[2]   ELECTROCHEMICAL BEHAVIOR OF METALLIC OXIDES [J].
BRENET, JP .
JOURNAL OF POWER SOURCES, 1979, 4 (03) :183-190
[3]   Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kurenya, A. G. ;
Zhang, Hongkun ;
Zhang, Huijuan ;
Chen, Xiaohong ;
Song, Huaihe .
CARBON, 2011, 49 (12) :4013-4023
[4]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[5]   The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution [J].
Cao, YL ;
Yang, HX ;
Ai, XP ;
Xiao, LF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 557 :127-134
[6]   Recent Advances in Manganese Oxide Nanocrystals: Fabrication, Characterization, and Microstructure [J].
Chen, Zhiwen ;
Jiao, Zheng ;
Pan, Dengyu ;
Li, Zhen ;
Wu, Minghong ;
Shek, Chan-Hung ;
Wu, C. M. Lawrence ;
Lai, Joseph K. L. .
CHEMICAL REVIEWS, 2012, 112 (07) :3833-3855
[7]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[8]   Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction [J].
Cheng, Fangyi ;
Shen, Jian ;
Ji, Weiqiang ;
Tao, Zhanliang ;
Chen, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (02) :460-466
[9]   Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes [J].
Cho, Yong Jae ;
Kim, Han Sung ;
Im, Hyungsoon ;
Myung, Yoon ;
Jung, Gyeong Bok ;
Lee, Chi Woo ;
Park, Jeunghee ;
Park, Mi-Hee ;
Cho, Jaephil ;
Kang, Hong Seok .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) :9451-9457
[10]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51