Analytic Riemann boundary value problem on h-summable closed curves

被引:8
作者
Abreu Blaya, Ricardo [1 ]
Bory Reyes, Juan [2 ]
Moreno Garcia, Tania [1 ]
Pena Perez, Yudier [1 ]
机构
[1] Univ Holguin, Dept Matemat, Holguin 80100, Cuba
[2] Univ Oriente, Dept Matemat, Santiago De Cuba 90500, Cuba
关键词
Analytic functions; Riemann boundary value problem; Fractal dimensions;
D O I
10.1016/j.amc.2013.11.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim Of this work is to further extend the notion of d-summability due to Harrison and Norton in the beginning of the 1990s. Explicit examples are given to illustrate how our notion can be applied to describe the geometry of a simply connected bounded open subset of C in a more delicate manner than the latter one. Applications on the solvability conditions for the Riemann boundary value problems for analytic functions over closed curves merely required to be summable in the generalized sense are described. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:593 / 600
页数:8
相关论文
共 20 条
[1]   Integration over non-rectifiable curves and Riemann boundary value problems [J].
Abreu-Blaya, Ricardo ;
Bory-Reyes, Juan ;
Kats, Boris A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) :177-187
[2]   Hyperanalytic Riemann boundary value problem on d-summable closed curves [J].
Abreu-Blaya, Ricardo ;
Bory-Reyes, Juan ;
Vilaire, Jean-Marie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :579-586
[3]  
[Anonymous], 1977, The Boundary Value Problem of Analysis Function
[4]  
Begehr H., 1994, COMPLEX ANAL METHODS
[5]  
Dolzenko E.P., 1963, Uspehi Mat. Nauk, V4, P135
[6]  
Dyn'kin E. M., 1979, Zap. Nauch. Sem. LOMI, V92, P115
[7]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[8]  
GILBERT RP, 1983, MATH SCI ENG, V163
[9]   THE GAUSS-GREEN THEOREM FOR FRACTAL BOUNDARIES [J].
HARRISON, J ;
NORTON, A .
DUKE MATHEMATICAL JOURNAL, 1992, 67 (03) :575-588
[10]   GEOMETRIC INTEGRATION ON FRACTAL CURVES IN THE PLANE [J].
HARRISON, J ;
NORTON, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :567-594