Cellpose: a generalist algorithm for cellular segmentation

被引:1749
作者
Stringer, Carsen [1 ]
Wang, Tim [1 ]
Michaelos, Michalis [1 ]
Pachitariu, Marius [1 ]
机构
[1] HHMI Janelia Res Campus, Ashburn, VA 20147 USA
关键词
NUCLEAR SEGMENTATION; IMAGE; DATASET;
D O I
10.1038/s41592-020-01018-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation method called Cellpose, which can precisely segment cells from a wide range of image types and does not require model retraining or parameter adjustments. Cellpose was trained on a new dataset of highly varied images of cells, containing over 70,000 segmented objects. We also demonstrate a three-dimensional (3D) extension of Cellpose that reuses the two-dimensional (2D) model and does not require 3D-labeled data. To support community contributions to the training data, we developed software for manual labeling and for curation of the automated results. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.
引用
收藏
页码:100 / +
页数:19
相关论文
共 60 条
[51]   Cell Detection with Star-Convex Polygons [J].
Schmidt, Uwe ;
Weigert, Martin ;
Broaddus, Coleman ;
Myers, Gene .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :265-273
[52]  
Sommer C, 2011, I S BIOMED IMAGING, P230, DOI 10.1109/ISBI.2011.5872394
[53]   Visualization and analysis of gene expression in tissue sections by spatial transcriptomics [J].
Stahl, Patrik L. ;
Salmen, Fredrik ;
Vickovic, Sanja ;
Lundmark, Anna ;
Navarro, Jose Fernandez ;
Magnusson, Jens ;
Giacomello, Stefania ;
Asp, Michaela ;
Westholm, Jakub O. ;
Huss, Mikael ;
Mollbrink, Annelie ;
Linnarsson, Sten ;
Codeluppi, Simone ;
Borg, Ake ;
Ponten, Fredrik ;
Costea, Paul Igor ;
Sahlen, Pelin ;
Mulder, Jan ;
Bergmann, Olaf ;
Lundeberg, Joakim ;
Frisen, Jonas .
SCIENCE, 2016, 353 (6294) :78-82
[54]  
Summerfield M., 2007, RAPID GUI PROGRAMMIN
[55]   An objective comparison of cell-tracking algorithms [J].
Ulman, Vladimir ;
Maska, Martin ;
Magnusson, Klas E. G. ;
Ronneberger, Olaf ;
Haubold, Carsten ;
Harder, Nathalie ;
Matula, Pavel ;
Matula, Petr ;
Svoboda, David ;
Radojevic, Miroslav ;
Smal, Ihor ;
Rohr, Karl ;
Jalden, Joakim ;
Blau, Helen M. ;
Dzyubachyk, Oleh ;
Lelieveldt, Boudewijn ;
Xiao, Pengdong ;
Li, Yuexiang ;
Cho, Siu-Yeung ;
Dufour, Alexandre C. ;
Olivo-Marin, Jean-Christophe ;
Reyes-Aldasoro, Constantino C. ;
Solis-Lemus, Jose A. ;
Bensch, Robert ;
Brox, Thomas ;
Stegmaier, Johannes ;
Mikut, Ralf ;
Wolf, Steffen ;
Hamprecht, Fred A. ;
Esteves, Tiago ;
Quelhas, Pedro ;
Demirel, Omer ;
Malmstrom, Lars ;
Jug, Florian ;
Tomancak, Pavel ;
Meijering, Erik ;
Munoz-Barrutia, Arrate ;
Kozubek, Michal ;
Ortiz-de-Solorzano, Carlos .
NATURE METHODS, 2017, 14 (12) :1141-+
[56]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[57]  
Weigert M., 2019, PREPRINT
[58]  
Williams E, 2017, NAT METHODS, V14, P775, DOI [10.1038/NMETH.4326, 10.1038/nmeth.4326]
[59]   Microscopy cell counting and detection with fully convolutional regression networks [J].
Xie, Weidi ;
Noble, J. Alison ;
Zisserman, Andrew .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03) :283-292
[60]  
Yi J, 2019, PREPRINT