Cellpose: a generalist algorithm for cellular segmentation

被引:1704
作者
Stringer, Carsen [1 ]
Wang, Tim [1 ]
Michaelos, Michalis [1 ]
Pachitariu, Marius [1 ]
机构
[1] HHMI Janelia Res Campus, Ashburn, VA 20147 USA
关键词
NUCLEAR SEGMENTATION; IMAGE; DATASET;
D O I
10.1038/s41592-020-01018-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation method called Cellpose, which can precisely segment cells from a wide range of image types and does not require model retraining or parameter adjustments. Cellpose was trained on a new dataset of highly varied images of cells, containing over 70,000 segmented objects. We also demonstrate a three-dimensional (3D) extension of Cellpose that reuses the two-dimensional (2D) model and does not require 3D-labeled data. To support community contributions to the training data, we developed software for manual labeling and for curation of the automated results. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.
引用
收藏
页码:100 / +
页数:19
相关论文
共 60 条
[1]  
Abdulla W., 2017, MASK R CNN OBJECT DE
[2]   A deep learning-based algorithm for 2-D cell segmentation in microscopy images [J].
Al-Kofahi, Yousef ;
Zaltsman, Alla ;
Graves, Robert ;
Marshall, Will ;
Rusu, Mirabela .
BMC BIOINFORMATICS, 2018, 19
[3]  
[Anonymous], 2017, INDIAN J HEMATOL BLO
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.7295/W9CCDB6843
[5]  
Apthorpe NJ, 2016, ADV NEUR IN, V29
[6]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[7]   How cryo-EM is revolutionizing structural biology [J].
Bai, Xiao-Chen ;
McMullan, Greg ;
Scheres, Sjors H. W. .
TRENDS IN BIOCHEMICAL SCIENCES, 2015, 40 (01) :49-57
[8]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[9]  
Beucher S., 1993, Mathematical morphology in image processing, P433
[10]   Microscopy-Based High-Content Screening [J].
Boutros, Michael ;
Heigwer, Florian ;
Laufer, Christina .
CELL, 2015, 163 (06) :1314-1325