Multiple Periodic solutions and Positive Homoclinic Solution for a differential equation

被引:3
作者
de Araujo, Anderson L. A. [1 ]
Pedroso, Kennedy Martins [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
关键词
Ordinary differential equations; periodic solutions; Homoclinic solutions; fixed point theorems;
D O I
10.36045/bbms/1378314514
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonautonomous differential equation of second order x '' - a(t)x + b(t)x(2) + c(t)x(3) = 0, where a(t), b(t), c(t) are T-periodic functions. This is a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of at least two T-periodic solution for this equation, using coincidence degree theories.
引用
收藏
页码:535 / 546
页数:12
相关论文
共 10 条
[1]  
AUSTIN G, 1971, Mathematical Biosciences, V11, P163, DOI 10.1016/0025-5564(71)90015-0
[2]  
CRONIN J, 1973, Mathematical Biosciences, V16, P209, DOI 10.1016/0025-5564(73)90031-X
[3]  
Gaines R. E., 1977, COINCIDENCE DEGREE N, V586
[4]  
Grossinho M.R., 1999, APPL MATH ENG, P67
[5]   Positive homoclinic solutions for a class of second order differential equations [J].
Grossinho, MD ;
Minhós, F ;
Tersian, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) :163-173
[6]   A NOTE ON PERIODIC-SOLUTIONS OF SOME NONAUTONOMOUS DIFFERENTIAL-EQUATIONS [J].
GROSSINHO, MR ;
SANCHEZ, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (02) :253-265
[7]  
ORegan D., 2006, Topological Degree Theory and Applications
[8]  
RABINOWITZ PH, 1978, COMMUN PUR APPL MATH, V31, P31
[9]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[10]  
SILVA EADE, 1991, NONLINEAR ANAL-THEOR, V16, P455