Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography

被引:39
作者
Hagen, C. K. [1 ]
Diemoz, P. C. [1 ]
Endrizzi, M. [1 ]
Rigon, L. [2 ,3 ]
Dreossi, D. [4 ]
Arfelli, F. [2 ,3 ]
Lopez, F. C. M. [2 ,3 ]
Longo, R. [2 ,3 ]
Olivo, A. [1 ]
机构
[1] UCL, Dept Med Phys & Bioengn, London WC1E 6BT, England
[2] Univ Trieste, Dept Phys, I-34127 Trieste, Italy
[3] Inst Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[4] Sincrotrone Trieste SCpA, I-34012 Basovizza, TS, Italy
基金
英国工程与自然科学研究理事会;
关键词
COMPUTED-TOMOGRAPHY; CODED-APERTURE;
D O I
10.1364/OE.22.007989
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast. (C) 2014 Optical Society of America
引用
收藏
页码:7989 / 8000
页数:12
相关论文
共 30 条
[1]   Diffraction enhanced x-ray imaging [J].
Chapman, D ;
Thomlinson, W ;
Johnston, RE ;
Washburn, D ;
Pisano, E ;
Gmur, N ;
Zhong, Z ;
Menk, R ;
Arfelli, F ;
Sayers, D .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (11) :2015-2025
[2]   Phase objects in synchrotron radiation hard x-ray imaging [J].
Cloetens, P ;
Barrett, R ;
Baruchel, J ;
Guigay, JP ;
Schlenker, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (01) :133-146
[3]  
Diemoz, UNPUB
[4]   Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging [J].
Diemoz, P. C. ;
Hagen, C. K. ;
Endrizzi, M. ;
Olivo, A. .
APPLIED PHYSICS LETTERS, 2013, 103 (24)
[5]   X-Ray Phase-Contrast Imaging with Nanoradian Angular Resolution [J].
Diemoz, P. C. ;
Endrizzi, M. ;
Zapata, C. E. ;
Pesic, Z. D. ;
Rau, C. ;
Bravin, A. ;
Robinson, I. K. ;
Olivo, A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (13)
[6]   A simplified approach for computed tomography with an X-ray grating interferometer [J].
Diemoz, P. C. ;
Coan, P. ;
Zanette, I. ;
Bravin, A. ;
Lang, S. ;
Glaser, C. ;
Weitkamp, T. .
OPTICS EXPRESS, 2011, 19 (03) :1691-1698
[7]   Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method [J].
Dilmanian, FA ;
Zhong, Z ;
Ren, B ;
Wu, XY ;
Chapman, LD ;
Orion, I ;
Thomlinson, WC .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (04) :933-946
[8]  
Guldberg Robert E, 2004, Birth Defects Res C Embryo Today, V72, P250, DOI 10.1002/bdrc.20016
[9]   X-RAY INTERACTIONS - PHOTOABSORPTION, SCATTERING, TRANSMISSION, AND REFLECTION AT E=50-30,000 EV, Z=1-92 [J].
HENKE, BL ;
GULLIKSON, EM ;
DAVIS, JC .
ATOMIC DATA AND NUCLEAR DATA TABLES, 1993, 54 (02) :181-342
[10]   Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source [J].
Herzen, Julia ;
Donath, Tilman ;
Pfeiffer, Franz ;
Bunk, Oliver ;
Padeste, Celestino ;
Beckmann, Felix ;
Schreyer, Andreas ;
David, Christian .
OPTICS EXPRESS, 2009, 17 (12) :10010-10018