The Vlasov-Poisson-Boltzmann System without Angular Cutoff

被引:47
作者
Duan, Renjun [1 ]
Liu, Shuangqian [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Jinan Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
POWER INTERMOLECULAR POTENTIALS; WHOLE SPACE; LINEARIZED BOLTZMANN; CLASSICAL-SOLUTIONS; COLLISION OPERATOR; EXPONENTIAL DECAY; SOFT POTENTIALS; CAUCHY-PROBLEM; PERIODIC BOX; EQUATION;
D O I
10.1007/s00220-013-1807-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the Vlasov-Poisson-Boltzmann system for plasma particles of two species in three space dimensions. The Boltzmann collision kernel is assumed to be angular non-cutoff with 3 < gamma < -2s and 1/2 a parts per thousand currency sign s < 1, where gamma , s are two parameters describing the kinetic and angular singularities, respectively. We establish the global existence and convergence rates of classical solutions to the Cauchy problem when initial data is near Maxwellians. This extends the results in Duan et al. (J Diff Eqs 252(12):6356-6386, 2012, Math Models Methods Appl Sci 23(6):927, 2013) for the cutoff kernel with -2 a parts per thousand currency sign gamma a parts per thousand currency sign 1 to the case -3 < gamma < -2 as long as the angular singularity exists instead and is strong enough, i.e., s is close to 1. The proof is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in Gressman and Strain (J Amer Math Soc 24(3):771-847, 2011) and the Vlasov-Poisson-Landau system in Guo (J Amer Math Soc 25:759-812, 2012).
引用
收藏
页码:1 / 45
页数:45
相关论文
共 39 条
[1]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[2]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[3]   Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :39-123
[5]   Dispersion relations for the linearized Fokker-Planck equation [J].
Degond, P ;
Lemou, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :137-167
[6]  
Duan R.-J., 2013, MATH MOD METH APPL S, V23, P927
[7]  
Duan R.-J., 2011, GLOBAL SOLUTIO UNPUB
[8]   Optimal decay estimates on the linearized boltzmann equation with time dependent force and their applications [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (01) :189-236
[9]   The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case [J].
Duan, Renjun ;
Yang, Tong ;
Zhao, Huijiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (12) :6356-6386
[10]   Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space [J].
Duan, Renjun ;
Strain, Robert M. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (11) :1497-1546