Reaction Mechanism of the Low-Temperature Water-Gas Shift Reaction on Au/TiO2 Catalysts

被引:69
作者
Sun, Keju [1 ,2 ,3 ]
Kohyama, Masanori [3 ]
Tanaka, Shingo [3 ]
Takeda, Seiji [2 ]
机构
[1] Yanshan Univ, Coll Environm & Chem Engn, Key Lab Appl Chem, 438 Hebei Ave, Qinhuangdao 066004, Peoples R China
[2] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Osaka 5670047, Japan
[3] Natl Inst Adv Ind Sci & Technol, Environm & Energy Dept, Res Inst Electrochem Energy, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan
基金
日本科学技术振兴机构;
关键词
IN-SITU; CO OXIDATION; AU NANOPARTICLES; GOLD CATALYSTS; DISSOCIATION; DRIFTS; TIO2(110); INTERFACE; CEO2(111); VACANCIES;
D O I
10.1021/acs.jpcc.7b02400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The redox and associative mechanisms for the low temperature water gas shift (WGS) reaction on Au/TiO2 catalysts are thoroughly examined by density functional theory calculations and microkinetic studies. For the redox mechanism, we have observed that the presence of a gold cluster and extra oxygen vacancies on a TiO2 surface is vital for the WGS reaction, especially for the process of H-2, release. For the associative mechanism via intermediate species, it is very hard for COOH to be generated in the WGS reaction. HCOO could be generated, while HCOO should only be a product of side reactions because of the difficulty in H-2 release. The present results indicate that the WGS reaction on Au/TiO2 catalysts can be well explained by the redox mechanism. The present understanding of the mechanism should open a new door for catalyst design in WGS reactions.
引用
收藏
页码:12178 / 12187
页数:10
相关论文
共 52 条
[1]   HAADF-STEM observation of Au nanoparticles on TiO2 [J].
Akita, T. ;
Tanaka, K. ;
Kohyama, M. ;
Haruta, M. .
SURFACE AND INTERFACE ANALYSIS, 2008, 40 (13) :1760-1763
[2]   Electron Microscopy Study of Gold Nanoparticles Deposited on Transition Metal Oxides [J].
Akita, Tomoki ;
Kohyama, Masanori ;
Haruta, Masatake .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (08) :1773-1782
[3]   Low temperature water gas shift over gold catalysts [J].
Andreeva, D .
GOLD BULLETIN, 2002, 35 (03) :82-88
[4]   Low-temperature water-gas shift reaction on Au/alpha-Fe2O3 catalyst [J].
Andreeva, D ;
Idakiev, V ;
Tabakova, T ;
Andreev, A ;
Giovanoli, R .
APPLIED CATALYSIS A-GENERAL, 1996, 134 (02) :275-283
[5]   MIXED OXIDES OF THE TYPE MO2 (FLUORITE)-M2O3 .1. OXYGEN DISSOCIATION PRESSURES AND PHASE RELATIONSHIPS IN THE SYSTEM CEO2-CE2O3 AT HIGH TEMPERATURES [J].
BEVAN, DJM ;
KORDIS, J .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1964, 26 (09) :1509-1523
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts [J].
Boccuzzi, F ;
Chiorino, A ;
Manzoli, M ;
Andreeva, D ;
Tabakova, T .
JOURNAL OF CATALYSIS, 1999, 188 (01) :176-185
[8]   Imaging water dissociation on TiO2(110) -: art. no. 266103 [J].
Brookes, IM ;
Muryn, CA ;
Thornton, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (26) :266103-1
[9]   Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism [J].
Burch, Robbie .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (47) :5483-5500
[10]   Reactivity of Hydroxyls and Water on a CeO2(111) Thin Film Surface: The Role of Oxygen Vacancy [J].
Chen, Bohao ;
Ma, Yunsheng ;
Ding, Liangbing ;
Xu, Lingshun ;
Wu, Zongfang ;
Yuan, Qing ;
Huang, Weixin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (11) :5800-5810