Evaporation from arbitrary nanoporous membrane configurations: An effective evaporation coefficient approach

被引:10
作者
John, Benzi [1 ]
Gibelli, Livio [2 ]
Enright, Ryan [3 ]
Sprittles, James E. [4 ]
Lockerby, Duncan A. [5 ]
Emerson, David R. [1 ]
机构
[1] STFC Daresbury Lab, Sci Comp Dept, Warrington WA4 4AD, Cheshire, England
[2] Univ Edinburgh, Sch Engn, Edinburgh EH9 3FB, Midlothian, Scotland
[3] Nokia Bell Labs, Efficient Energy Transfer Dept ET, Dublin D15 Y6NT, Ireland
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[5] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
INTENSIVE EVAPORATION; HEAT-FLUX; THIN-FILM; TRANSPORT; CONDENSATION; SIMULATION; SURFACE; WATER;
D O I
10.1063/5.0046174
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thin-film evaporation from nanoporous membranes is a promising cooling technology employed for the thermal management of modern electronic devices. We propose an effective one-dimensional analytical approach that can accurately predict the temperature and density jump relations, and evaporation rates, for arbitrary nanoporous membrane configurations. This is accomplished through the specification of an effective evaporation coefficient that encompasses the influence of different system parameters, such as porosity, meniscus shape, evaporation coefficient, and receding height. Our proposed approach can accurately predict all the typical output evaporation parameters of interest like mass flux, and temperature and density jumps, without the need to carry out computationally demanding numerical simulations. Several exemplar cases comprising of nanoporous configurations with a wide range of parameters have been considered to demonstrate the feasibility and accuracy of this analytic approach. This work thus enables a quick, efficient, and accurate means of aiding the design and engineering analysis of nanoporous membrane-based cooling devices.
引用
收藏
页数:18
相关论文
共 46 条
[1]   Kinetic analysis of intensive evaporation (method of reverse balances) [J].
Avdeev, A. A. ;
Zudin, Yu. B. .
HIGH TEMPERATURE, 2012, 50 (04) :527-535
[2]  
Bird G.A., 1998, Molecular Gas Dynamics and the Direct Simulation of Gas Flows
[3]   Characteristics of flash boiling and its effects on spray behavior in gasoline direct injection injectors: A review [J].
Chang, Mengzhao ;
Lee, Ziyoung ;
Park, Sungwook ;
Park, Suhan .
FUEL, 2020, 271
[4]   Nanowires for Enhanced Boiling Heat Transfer [J].
Chen, Renkun ;
Lu, Ming-Chang ;
Srinivasan, Vinod ;
Wang, Zhijie ;
Cho, Hyung Hee ;
Majumdar, Arun .
NANO LETTERS, 2009, 9 (02) :548-553
[5]   A numerical investigation of the steady evaporation of a polyatomic gas [J].
Frezzotti, Aldo .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2007, 26 (01) :93-104
[6]   Boundary conditions at the vapor-liquid interface [J].
Frezzotti, Aldo .
PHYSICS OF FLUIDS, 2011, 23 (03)
[7]   A STUDY OF THE MOLECULAR MECHANISM OF VAPOR CONDENSATION [J].
FUJIKAWA, S ;
MAEREFAT, M .
JSME INTERNATIONAL JOURNAL SERIES II-FLUIDS ENGINEERING HEAT TRANSFER POWER COMBUSTION THERMOPHYSICAL PROPERTIES, 1990, 33 (04) :634-641
[8]   Designing the Next Generation of Chemical Separation Membranes [J].
Gin, Douglas L. ;
Noble, Richard D. .
SCIENCE, 2011, 332 (6030) :674-676
[9]   High Heat Flux Evaporation of Low Surface Tension Liquids from Nanoporous Membranes [J].
Hanks, Daniel F. ;
Lu, Zhengmao ;
Sircar, Jay ;
Kinefuchi, Ikuya ;
Bagnall, Kevin R. ;
Salamon, Todd R. ;
Antao, Dion S. ;
Barabadi, Banafsheh ;
Wang, Evelyn N. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) :7232-7238
[10]  
Hertz H., 1882, Ann. Physik, V253, P177, DOI [10.1002/andp.18822531002https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18822531002, DOI 10.1002/ANDP.18822531002HTTPS://ONLINELIBRARY.WILEY.COM/DOI/PDF/10.1002/ANDP.18822531002]