Effect of crystallization temperature on dielectric and energy-storage properties in SrO-Na2O-Nb2O5-SiO2 glass-ceramics

被引:32
作者
Wang, Haitao [1 ,2 ]
Liu, Jinhua [1 ,3 ]
Zhai, Jiwei [1 ]
Shen, Bo [1 ]
Pan, Zhongbin [1 ]
Liu, Jing Ran [1 ]
Yang, Ke [1 ]
机构
[1] Tongji Univ, Key Lab Adv Civil Engn Mat, Minist Educ, Funct Mat Res Lab,Sch Mat Sci & Engn, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmetall Crystalline & Energy Co, Yichang 443002, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Glass-ceramic; Breakdown strength; Energy-storage density; Discharge efficiency; POLYMER NANOCOMPOSITES; DISCHARGE EFFICIENCY; DENSITY; RATIO; MICROSTRUCTURES; TITANATE; KINETICS; SYSTEM;
D O I
10.1016/j.ceramint.2017.04.026
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The SrO-Na2O-Nb2O5-SiO2 (SNNS) glass-ceramics were prepared through the melt-quenching combined with the controlled crystallization technique. XRD results showed Sr6Nb10O30, SrNb2O6, NaSr2Nb5O15 with tungsten bronze structure and NaNbO3 with the perovskite structure. With the decrease of crystallization temperature, dielectric constant firstly increased and then decreased, while breakdown strength (BDS) was increased. High BDS of the glass-ceramics is attributed to the dense and uniform microstructure at low crystallization temperature. The optimal dielectric constant of 140 +/- at 900 degrees C and BDS of 2182 +/- 129 kV/cm at 750 degrees C were obtained in SNNS glass-ceramics. The theoretical energy-storage density was significantly improved up to the highest value of 15.2 +/- 1.0 J/cm(3) at 800 degrees C, which is about 5 times than that at 950 degrees C. The discharged efficiency increased from 65.8% at 950 degrees C to 93.6% at 750 degrees C under the electric field of 500 kV/cm by decreasing crystallization temperature.
引用
收藏
页码:8898 / 8904
页数:7
相关论文
共 36 条
[1]   Ultrafast dynamics of a ferromagnetic nanocomposite [J].
Buchanan, KS ;
Zhu, XB ;
Meldrum, A ;
Freeman, MR .
NANO LETTERS, 2005, 5 (02) :383-387
[2]   Enhanced energy storage properties of P2O5 modified niobate-based B2O3 system glass ceramic composites [J].
Chen, G. H. ;
Zheng, J. ;
Yuan, C. L. ;
Zhou, C. R. ;
Kang, X. L. ;
Xu, J. W. ;
Yang, Y. .
MATERIALS LETTERS, 2016, 176 :46-48
[3]   Effect of the Ba/Ti Ratio on the Microstructures and Dielectric Properties of Barium Titanate-Based Glass-Ceramics [J].
Chen, Jichun ;
Zhang, Yong ;
Deng, Changsheng ;
Dai, Xiaming ;
Li, Longtu .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (06) :1350-1353
[4]   Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric thick films prepared by tape-casing method [J].
Chen, Liming ;
Li, Yong ;
Zhang, Qiwei ;
Hao, Xihong .
CERAMICS INTERNATIONAL, 2016, 42 (11) :12537-12542
[5]   Crystallization kinetics and phase development of PbO-BaO-SrO-Nb2O5-B2O3-SiO2-based glass-ceramics [J].
Cheng, CT ;
Lanagan, M ;
Jones, B ;
Lin, JT ;
Pan, MJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (11) :3037-3042
[6]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[7]   Effect of Microwave Processing on the Crystallization and Energy Density of BaO-Na2O-Nb2O5-SiO2-B2O3 Glass-Ceramics [J].
Davis, Calvin, III ;
Pertuit, Andre L. ;
Nino, Juan C. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (01) :65-73
[8]   Glass-ceramics of barium strontium titanate for high energy density capacitors [J].
Gorzkowski, E. P. ;
Pan, M.-J. ;
Bender, B. ;
Wu, C. C. M. .
JOURNAL OF ELECTROCERAMICS, 2007, 18 (3-4) :269-276
[9]   Optimization of energy storage density in ANb2O6-NaNbO3-SiO2 (A = [(1-x)Pb, xSr]) nanostructured glass-ceramic dielectrics [J].
Han, D. F. ;
Zhang, Q. M. ;
Luo, J. ;
Tang, Q. ;
Du, J. .
CERAMICS INTERNATIONAL, 2012, 38 (08) :6903-6906
[10]  
Huang J.J., 2010, APPL PHYS LETT, V96