Uprooting defects to enable high-performance III-V optoelectronic devices on silicon

被引:56
作者
Bioud, Youcef A. [1 ]
Boucherif, Abderraouf [1 ]
Myronov, Maksym [2 ]
Soltani, Ali [1 ]
Patriarche, Gilles [3 ]
Braidy, Nadi [1 ,4 ]
Jellite, Mourad [1 ]
Drouiri, Dominique [1 ]
Ares, Richard [1 ]
机构
[1] Univ Sherbrooke, 3IT, CNRS UMI 3463, LN2, 3000 Blvd Univ, Sherbrooke, PQ J1K 0A5, Canada
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol, Route Nozay, F-91460 Marcoussis, France
[4] Univ Sherbrooke, Dept Chem & Biotechnol Engn, 2500 Boul Univ, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
THREADING DISLOCATION DENSITIES; POROUS SILICON; GE EPILAYERS; SOLAR-CELLS; SI; REDUCTION; GERMANIUM; GROWTH; LAYERS; SIMULATION;
D O I
10.1038/s41467-019-12353-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The monolithic integration of III-V compound semiconductor devices with silicon presents physical and technological challenges, linked to the creation of defects during the deposition process. Herein, a new defect elimination strategy in highly mismatched heteroepitaxy is demonstrated to achieve a ultra-low dislocation density, epi-ready Ge/Si virtual substrate on a wafer scale, using a highly scalable process. Dislocations are eliminated from the epilayer through dislocation-selective electrochemical deep etching followed by thermal annealing, which creates nanovoids that attract dislocations, facilitating their subsequent annihilation. The averaged dislocation density is reduced by over three orders of magnitude, from similar to 10(8) cm(-2) to a lower-limit of similar to 10(4) cm(-2) for 1.5 mu m thick Ge layer. The optical properties indicate a strong enhancement of luminescence efficiency in GaAs grown on this virtual substrate. Collectively, this work demonstrates the promise for transfer of this technology to industrial-scale production of integrated photonic and optoelectronic devices on Si platforms in a cost-effective way.
引用
收藏
页数:12
相关论文
共 85 条
[1]  
Andre C.L., 2002, Conference Record of the Twenty-Ninth Ieee Photovoltaic Specialists Conference 2002, P1043, DOI DOI 10.1109/PVSC.2002.1190784
[2]   Compliant substrates for heteroepitaxial semiconductor devices: Theory, experiment, and current directions [J].
Ayers, J. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (10) :1511-1523
[3]   PHOTO-LUMINESCENCE OF MOLECULAR-BEAM EPITAXIALLY GROWN GE-DOPED GAAS [J].
BAFLEUR, M ;
MUNOZYAGUE, A ;
CASTANO, JL ;
PIQUERAS, J .
JOURNAL OF APPLIED PHYSICS, 1983, 54 (05) :2630-2634
[4]  
Beattie M. N., 2018, 3 5 MULTIJUNCTION SO, DOI [10.1109/PVSC.2018.8547836, DOI 10.1109/PVSC.2018.8547836]
[5]   Tunable conductivity in mesoporous germanium [J].
Beattie, Meghan N. ;
Bioud, Youcef A. ;
Hobson, David G. ;
Boucherif, Abderraouf ;
Valdivia, Christopher E. ;
Drouin, Dominique ;
Ares, Richard ;
Hinzer, Karin .
NANOTECHNOLOGY, 2018, 29 (21)
[6]   Comparative study of In GaAs integration on bulk Ge and virtual Ge/Si(100) substrates for low-cost photovoltaic applications [J].
Beeler, Richard ;
Mathews, Jay ;
Weng, Change ;
Tolle, John ;
Roucka, Radek ;
Chizmeshya, A. V. G. ;
Juday, Reid ;
Bagchi, Sampriti ;
Menendez, Jose ;
Kouvetakis, John .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) :2362-2370
[7]   Accommodation of SiGe strain on a universally compliant porous silicon substrate [J].
Berbezier, Isabelle ;
Aqua, Jean-Noel ;
Aouassa, Mansour ;
Favre, Luc ;
Escoubas, Stephanie ;
Gouye, Adrien ;
Ronda, Antoine .
PHYSICAL REVIEW B, 2014, 90 (03)
[8]  
Bioud Y., 2016, MESOPOROUS GERMANIUM
[9]  
Bioud Y., 2017, MESOPOROUS GERMANIUM
[10]  
Bioud Y. A., 2017, LOW COST GE SI VIRTU