Global analysis of new malaria intrahost models with a competitive exclusion principle

被引:68
作者
Iggidr, Abderrhaman [1 ]
Kamgang, Jean-Claude
Sallet, Gauthier
Tewa, Jean-Jules
机构
[1] Univ Metz, INRIA Lorraine, F-57045 Metz 01, France
[2] Univ Metz, Lab Math & Applicat Metz, UMR 7122, CNRS, F-57045 Metz 01, France
[3] Univ Ngaoundere, ENSAI, Dept Math, Ngaoundere, Cameroon
[4] Univ Yaounde I, Dept Math, Yaounde, Cameroon
关键词
nonlinear dynamical systems; intrahost models; global stability; Plasmodium falciparum; competitive exclusion principle;
D O I
10.1137/050643271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a malaria within-host model with k classes of age for the parasitized red blood cells and n strains for the parasite. We provide a global analysis for this model. A competitive exclusion principle holds. If R-0, the basic reproduction number, satisfies R-0 <= 1, then the disease-free equilibrium is globally asymptotically stable. On the contrary if R-0 > 1, then generically there is a unique endemic equilibrium which corresponds to the endemic stabilization of the most virulent parasite strain and to the extinction of all the other parasites strains. We prove that this equilibrium is globally asymptotically stable on the positive orthant if a mild sufficient condition is satisfied.
引用
收藏
页码:260 / 278
页数:19
相关论文
共 67 条
[1]  
ADDA P, IN PRESS DISCRETE B
[2]   Complex dynamic behaviours in the interaction between parasite populations and the host's immune system [J].
Anderson, RM .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 1998, 28 (04) :551-566
[3]   NON-LINEAR PHENOMENA IN HOST-PARASITE INTERACTIONS [J].
ANDERSON, RM ;
MAY, RM ;
GUPTA, S .
PARASITOLOGY, 1989, 99 :S59-S79
[4]  
[Anonymous], 1967, Dynamical Systems: Stability Theory and Applications
[5]  
[Anonymous], PRINCETON SER THEOR
[6]  
[Anonymous], PARASSITOLOGIA
[7]  
[Anonymous], WILEY SER MATH COMPU
[8]   ON THE GENERAL STRUCTURE OF EPIDEMIC SYSTEMS - GLOBAL ASYMPTOTIC STABILITY [J].
BERETTA, E ;
CAPASSO, V .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (06) :677-694
[9]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[10]   A COMPETITIVE-EXCLUSION PRINCIPLE FOR PATHOGEN VIRULENCE [J].
BREMERMANN, HJ ;
THIEME, HR .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (02) :179-190