Detecting unstable periodic orbits based only on time series: When adaptive delayed feedback control meets reservoir computing

被引:35
作者
Zhu, Qunxi [1 ,2 ,3 ]
Ma, Huanfei [4 ]
Lin, Wei [1 ,2 ,3 ,5 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, LMNS, Shanghai 200433, Peoples R China
[3] Fudan Univ, LCNBI, Shanghai 200433, Peoples R China
[4] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[5] Fudan Univ, Ctr Computat Syst Biol, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
DEEP NEURAL-NETWORKS; CHAOS;
D O I
10.1063/1.5120867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we focus on a topic of detecting unstable periodic orbits (UPOs) only based on the time series observed from the nonlinear dynamical system whose explicit model is completely unknown a priori. We articulate a data-driven and model-free method which connects a well-known machine learning technique, the reservoir computing, with a widely-used control strategy of nonlinear dynamical systems, the adaptive delayed feedback control. We demonstrate the advantages and effectiveness of the articulated method through detecting and controlling UPOs in representative examples and also show how those configurations of the reservoir computing in our method influence the accuracy of UPOs detection. Additionally and more interestingly, from the viewpoint of synchronization, we analytically and numerically illustrate the effectiveness of the reservoir computing in dynamical systems learning and prediction.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] [Anonymous], 1977, SOLUTIONS ILL POSED
  • [2] [Anonymous], 2018, Science, DOI DOI 10.1126/SCIENCE.AAW2747
  • [3] [Anonymous], 2013, INTERDISCIPLINARY AP
  • [4] Information processing using a single dynamical node as complex system
    Appeltant, L.
    Soriano, M. C.
    Van der Sande, G.
    Danckaert, J.
    Massar, S.
    Dambre, J.
    Schrauwen, B.
    Mirasso, C. R.
    Fischer, I.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [5] EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS
    AUERBACH, D
    CVITANOVIC, P
    ECKMANN, JP
    GUNARATNE, G
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (23) : 2387 - 2389
  • [6] Unstable periodic orbits in the Lorenz attractor
    Boghosian, Bruce M.
    Brown, Aaron
    Laett, Jonas
    Tang, Hui
    Fazendeiro, Luis M.
    Coveney, Peter V.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2345 - 2353
  • [7] Stable signal recovery from incomplete and inaccurate measurements
    Candes, Emmanuel J.
    Romberg, Justin K.
    Tao, Terence
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) : 1207 - 1223
  • [8] Using reservoir computers to distinguish chaotic signals
    Carroll, T. L.
    [J]. PHYSICAL REVIEW E, 2018, 98 (05)
  • [9] Chen G., 2003, CHAOS CONTROL THEORY
  • [10] Pinning complex networks by a single controller
    Chen, Tianping
    Liu, Xiwei
    Lu, Wenlian
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) : 1317 - 1326