Distributed Centrality Analysis of Social Network Data Using MapReduce

被引:19
作者
Behera, Ranjan Kumar [1 ]
Rath, Santanu Kumar [1 ]
Misra, Sanjay [2 ,3 ]
Damasevicius, Robertas [4 ,5 ]
Maskeliunas, Rytis [5 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Rourkela 769008, India
[2] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey
[3] Covenant Univ, Dept Elect & Informat Engn, Ota 1023, Nigeria
[4] Silesian Tech Univ, Fac Appl Math, PL-44100 Gliwice, Poland
[5] Kaunas Univ Technol, Dept Multimedia Engn, LT-51368 Kaunas, Lithuania
关键词
distributed computing; social network analysis; network centrality; network pattern recognition; MapReduce; INFORMATION;
D O I
10.3390/a12080161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing the structure of a social network helps in gaining insights into interactions and relationships among users while revealing the patterns of their online behavior. Network centrality is a metric of importance of a network node in a network, which allows revealing the structural patterns and morphology of networks. We propose a distributed computing approach for the calculation of network centrality value for each user using the MapReduce approach in the Hadoop platform, which allows faster and more efficient computation as compared to the conventional implementation. A distributed approach is scalable and helps in efficient computations of large-scale datasets, such as social network data. The proposed approach improves the calculation performance of degree centrality by 39.8%, closeness centrality by 40.7% and eigenvalue centrality by 41.1% using a Twitter dataset.
引用
收藏
页数:11
相关论文
共 38 条
[1]   The MapReduce-based approach to improve the shortest path computation in large-scale road networks: the case of A* algorithm [J].
Adoni W.Y.H. ;
Nahhal T. ;
Aghezzaf B. ;
Elbyed A. .
Journal of Big Data, 2018, 5 (01)
[2]  
Al Aghbari Z., 2019, DATA SCI J, V18, DOI [10.5334/dsj-2019-013, DOI 10.5334/DSJ-2019-013]
[3]  
[Anonymous], 2012, NETWORK INFORM THEOR
[4]  
[Anonymous], 2011, PROCEEDINGS SIAM, DOI DOI 10.1137/1.9781611972818.11
[5]   Hadoop MapReduce Performance on SSDs for Analyzing Social Networks [J].
Bakratsas, M. ;
Basaras, P. ;
Katsaros, D. ;
Tassiulas, L. .
BIG DATA RESEARCH, 2018, 11 :1-10
[6]   Estimating graph distance and centrality on shared nothing architectures [J].
Balkir, Atilla Soner ;
Oktay, Huseyin ;
Foster, Ian .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14) :3587-3613
[7]   Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective [J].
Basaras, Pavlos ;
Iosifidis, George ;
Katsaros, Dimitrios ;
Tassiulas, Leandros .
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (01) :31-45
[8]   Large Scale Community Detection Using a Small World Model [J].
Behera, Ranjan Kumar ;
Rath, Santanu Kumar ;
Misra, Sanjay ;
Damasevicius, Robertas ;
Maskeliunas, Rytis .
APPLIED SCIENCES-BASEL, 2017, 7 (11)
[9]   Eigenvector centrality and structural zeroes and ones: When is a neighbor not a neighbor? [J].
Bonacich, Phillip ;
Lloyd, Paulette .
SOCIAL NETWORKS, 2015, 43 :86-90
[10]   A graph-theoretic perspective on centrality [J].
Borgatti, Stephen P. ;
Everett, Martin G. .
SOCIAL NETWORKS, 2006, 28 (04) :466-484