Light and Strong SiC Networks

被引:144
作者
Ferraro, Claudio [1 ]
Garcia-Tunon, Esther [1 ]
Rocha, Victoria G. [1 ]
Barg, Suelen [2 ]
Dolores Farinas, Maria [3 ]
Gomez Alvarez-Arenas, Tomas E. [3 ]
Sernicola, Giorgio [1 ]
Giuliani, Finn [1 ]
Saiz, Eduardo [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, Dept Mat, South Kensington Campus, London SW7 2AZ, England
[2] Univ Manchester, Sch Mat, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] CSIC, Informat & Phys Technol Inst ITEFI, Sensors & Ultrason Technol Dept, Serrano 144, Madrid 28006, Spain
基金
欧盟第七框架计划;
关键词
LOW THERMAL-CONDUCTIVITY; MONOLITHIC SILICA AEROGEL; MACROPOROUS CERAMICS; FOAMS; GRAPHENE; CARBIDE; FABRICATION; COMPOSITES; ULTRALIGHT; PARTICLES;
D O I
10.1002/adfm.201504051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The directional freezing of microfiber suspensions is used to assemble highly porous (porosities ranging between 92% and 98%) SiC networks. These networks exhibit a unique hierarchical architecture in which thin layers with honeycomb-like structure and internal strut length in the order of 1-10 mu m in size are aligned with an interlayer spacing ranging between 15 and 50 mu m. The resulting structures exhibit strengths (up to 3 MPa) and stiffness (up to 0.3 GPa) that are higher than aerogels of similar density and comparable to other ceramic microlattices fabricated by vapor deposition. Furthermore, this wet processing technique allows the fabrication of large-size samples that are stable at high temperature, with acoustic impedance that can be manipulated over one order of magnitude (0.03-0.3 MRayl), electrically conductive and with very low thermal conductivity. The approach can be extended to other ceramic materials and opens new opportunities for the fabrication of ultra-light structures with unique mechanical and functional properties in practical dimensions.
引用
收藏
页码:1636 / 1645
页数:10
相关论文
共 52 条
[1]   Acoustic impedance matching of piezoelectric transducers to the air [J].
Alvarez-Arenas, TEG .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (05) :624-633
[2]   Viscoelasticity of silica aerogels at ultrasonic frequencies [J].
Alvarez-Arenas, TEG ;
de Espinosa, FRM ;
Moner-Girona, M ;
Rodríguez, E ;
Roig, A ;
Molins, E .
APPLIED PHYSICS LETTERS, 2002, 81 (07) :1198-1200
[3]  
[Anonymous], 1997, Cellular solid structure and properties
[4]  
[Anonymous], 2009, GRANTA CES 2009 EDUP
[5]   Thermal conductivity of highly porous mullite material [J].
Barea, R ;
Osendi, MI ;
Ferreira, JMF ;
Miranzo, P .
ACTA MATERIALIA, 2005, 53 (11) :3313-3318
[6]   Mesoscale assembly of chemically modified graphene into complex cellular networks [J].
Barg, Suelen ;
Perez, Felipe Macul ;
Ni, Na ;
Pereira, Paula do Vale ;
Maher, Robert C. ;
Garcia-Tunon, Esther ;
Eslava, Salvador ;
Agnoli, Stefano ;
Mattevi, Cecilia ;
Saiz, Eduardo .
NATURE COMMUNICATIONS, 2014, 5
[7]  
Barsoum M.W., 1997, Fundamentals of Ceramics, V2nd ed.
[8]   High-strength cellular ceramic composites with 3D microarchitecture [J].
Bauer, Jens ;
Hengsbach, Stefan ;
Tesari, Iwiza ;
Schwaiger, Ruth ;
Kraft, Oliver .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (07) :2453-2458
[9]  
Brunet T, 2015, NAT MATER, V14, P384, DOI [10.1038/nmat4164, 10.1038/NMAT4164]
[10]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651