On the transition laws of p-tempered α-stable OU-processes

被引:0
作者
Grabchak, Michael [1 ]
机构
[1] Univ N Carolina, Charlotte, NC 27599 USA
基金
俄罗斯科学基金会;
关键词
Tempered stable distributions; Ornstein-Uhlenbeck processes; Rejection sampling; INFINITELY DIVISIBLE DISTRIBUTIONS; ORNSTEIN-UHLENBECK PROCESSES;
D O I
10.1007/s00180-020-01055-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive an explicit representation for the transition law of a p-tempered alpha-stable process of Ornstein-Uhlenbeck-type and use it to develop a methodology for simulation. Our results apply in both the univariate and multivariate cases. Special attention is given to the case where p <= alpha, which is more complicated and requires developing the new class of so-called incomplete gamma distributions.
引用
收藏
页码:1415 / 1436
页数:22
相关论文
共 25 条
[1]  
[Anonymous], 1987, MULTIVARIATE STAT SI, DOI DOI 10.1002/9781118150740
[2]   Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :167-207
[3]  
Barndorff-Nielsen OE, 2006, BERNOULLI, V12, P1
[4]   TEMPERED INFINITELY DIVISIBLE DISTRIBUTIONS AND PROCESSES [J].
Bianchi, M. L. ;
Rachev, S. T. ;
Kim, Y. S. ;
Fabozzi, F. J. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (01) :2-26
[5]   Tempered stable Ornstein- Uhlenbeck processes: A practical view [J].
Bianchi, Michele Leonardo ;
Rachev, Svetlozar T. ;
Fabozzi, Frank J. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) :423-445
[6]   APPROXIMATION OF MULTIDIMENSIONAL STABLE DENSITIES [J].
BYCZKOWSKI, T ;
NOLAN, JP ;
RAJPUT, B .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 46 (01) :13-31
[7]  
Cont R., 2004, Financ. Math. Ser., V65, P50
[8]  
Grabchak M., 2017, SYMTS SYMMETRIC TEMP
[9]  
Grabchak M., 2016, Tempered Stable Distributions: Stochastic Models for Multiscale Processes
[10]   On the simulation of general tempered stable Ornstein-Uhlenbeck processes [J].
Grabchak, Michael .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (06) :1057-1081