Harnack inequality and derivative formula for stochastic heat equation with fractional noise

被引:5
作者
Yan, Litan [1 ]
Yin, Xiuwei [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Coll Sci, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
关键词
Harnack type inequality; derivative formula; stochastic heat equation; fractional noise; strong Feller property; DRIVEN; SDES;
D O I
10.1214/18-ECP138
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note, we establish the Harnack inequality and derivative formula for stochastic heat equation driven by fractional noise with Hurst index H is an element of (1/4, 1/2). As an application, we introduce a strong Feller property.
引用
收藏
页数:11
相关论文
共 18 条
[1]   Bismut formulae and applications for functional SPDEs [J].
Bao, Jianhai ;
Wang, Feng-Yu ;
Yuan, Chenggui .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (04) :509-522
[2]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[3]   Harnack inequality and derivative formula for SDE driven by fractional Brownian motion [J].
Fan XiLiang .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (03) :515-524
[4]  
Krylov N. V., 1979, SERIYA SOVREMENNYE P, V14, P1471
[5]   Harnack inequality and applications for stochastic evolution equations with monotone drifts [J].
Liu, Wei .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (04) :747-770
[6]  
Nualart D., 2004, STOCH DYNAM, V04, P201, DOI DOI 10.1142/S0219493704001012
[7]  
Samko S. G., 1993, Fractional integrals and derivatives. Theory and applications
[8]  
WALSH JB, 1986, LECT NOTES MATH, V1180, P265
[9]  
Wang F.-Y, 2013, Harnack Inequalities and Applications for Stochastic Partial Differential Equations
[10]   Harnack inequality and applications for stochastic generalized porous media equations [J].
Wang, Feng-Yu .
ANNALS OF PROBABILITY, 2007, 35 (04) :1333-1350