Kolyvagin systems of Stark units

被引:18
作者
Bueyuekboduk, Kazim [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2009年 / 631卷
关键词
CONJECTURES;
D O I
10.1515/CRELLE.2009.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct, using Stark elements of Rubin [8], Kolyvagin systems for certain modified Selmer structures (that are adjusted to have core rank one in the sense of [4]) and prove a Gras-type conjecture, relating these Kolyvagin systems to appropriate ideal class groups, refining the results of [7] (in a sense we explain below), and of [5], [9] applied to our setting.
引用
收藏
页码:85 / 107
页数:23
相关论文
共 13 条
[1]  
Benedict H., 1988, J FAC SCI U TOKYO IA, V35, P177
[2]  
BUYUKBODUK K, 2007, A ADIC KOLYVAGIN SYS
[3]  
Krasner M., 1939, Acta Arith, V3, P133
[4]  
Mazur B, 2004, MEM AM MATH SOC, V168, pVII
[5]   p-adic Euler systems and Iwasawa theory [J].
Perrin-Riou, B .
ANNALES DE L INSTITUT FOURIER, 1998, 48 (05) :1231-+
[6]   Gras-type conjectures for function fields [J].
Popescu, CD .
COMPOSITIO MATHEMATICA, 1999, 118 (03) :263-290
[7]   A stark conjecture ''over Z'' for abelian L-functions with multiple zeros [J].
Rubin, K .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (01) :33-&
[8]  
RUBIN K, 1992, J REINE ANGEW MATH, V425, P141
[9]  
Rubin K., 2000, Ann. of Math. Stud, V147
[10]   Twisted zeta-functions and abelian Stark Conjectures [J].
Solomon, D .
JOURNAL OF NUMBER THEORY, 2002, 94 (01) :10-48