High-Performance Thick-Film All-Polymer Solar Cells Created Via Ternary Blending of a Novel Wide-Bandgap Electron-Donating Copolymer

被引:42
作者
Fan, Baobing [1 ]
Zhu, Peng [1 ]
Xin, Jingming [2 ]
Li, Ning [3 ]
Ying, Lei [1 ]
Zhong, Wenkai [1 ]
Li, Zhenye [1 ]
Ma, Wei [2 ]
Huang, Fei [1 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[3] FAU Erlangen Nurnberg, Inst Mat Elect & Energy Technol I MEET, D-91058 Erlangen, Germany
基金
中国国家自然科学基金;
关键词
all-polymer solar cells; high performance; siloxane-functionalized side chains; ternary blends; thick active layers; POWER CONVERSION EFFICIENCY; FULLERENE-POLYMER; CONJUGATED POLYMERS; MOLECULAR-WEIGHT; ORGANIC PHOTOVOLTAICS; ACCEPTOR; MORPHOLOGY; SOLVENT; DONOR; FLUORINATION;
D O I
10.1002/aenm.201703085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel wide-bandgap electron-donating copolymer containing an electrondeficient, difluorobenzotriazole building block with a siloxane-terminated side chain is developed. The resulting polymer, poly{(4,8-bis(4,5-dihexylthiophen2- yl) benzo[1,2-b: 4,5-b'] dithiophene-co-4,7-di(thiophen-2-yl)-5,6-difluoro-2-(6( 1,1,1,3,5,5,5-heptamethyltri-siloxan-3-yl) hexyl)-2H-benzo[d][1,2,3] triazole} (PBTA-Si), is used to successfully fabricate high-performance, ternary, all-polymer solar cells (all-PSCs) insensitive to the active layer thickness. An impressively high fill factor of approximate to 76% is achieved with various ternary-blending ratios. The optimized all-PSCs attain a power conversion efficiency (PCE) of 9.17% with an active layer thickness of 350 nm and maintain a PCE over 8% for thicknesses over 400 nm, which is the highest reported efficiency for thick all-PSCs. These results can be attributed to efficient charge transfer, additional energy transfer, high and balanced charge transport, and weak recombination behavior in the photo-active layer. Moreover, the photoactive layers of the ternary all-PSCs are processed in a nonhalogenated solvent, 2-methyltetrahydrofuran, which greatly improves their compatibility with large-scale manufacturing.
引用
收藏
页数:8
相关论文
共 54 条
[1]  
Baran D, 2017, NAT MATER, V16, P363, DOI [10.1038/NMAT4797, 10.1038/nmat4797]
[2]   High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths [J].
Benten, Hiroaki ;
Nishida, Takaya ;
Mori, Daisuke ;
Xu, Huajun ;
Ohkita, Hideo ;
Ito, Shinzaburo .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :135-140
[3]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[4]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[5]   Green-Solvent-Processed Molecular Solar Cells [J].
Chen, Xiaofen ;
Liu, Xiaofeng ;
Burgers, Mark A. ;
Huang, Ye ;
Bazan, Guillermo C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (52) :14378-14381
[6]  
Collins BA, 2012, NAT MATER, V11, P536, DOI [10.1038/NMAT3310, 10.1038/nmat3310]
[7]   Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells [J].
Deng, Dan ;
Zhang, Yajie ;
Zhang, Jianqi ;
Wang, Zaiyu ;
Zhu, Lingyun ;
Fang, Jin ;
Xia, Benzheng ;
Wang, Zhen ;
Lu, Kun ;
Ma, Wei ;
Wei, Zhixiang .
NATURE COMMUNICATIONS, 2016, 7
[8]   Conjugated polymers containing Ba←N unit as electron acceptors for all-polymer solar cells [J].
Dou, Chuandong ;
Liu, Jun ;
Wang, Lixiang .
SCIENCE CHINA-CHEMISTRY, 2017, 60 (04) :450-459
[9]   All-Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane-Functionalized Side Chains with Efficiency over 10% [J].
Fan, Baobing ;
Ying, Lei ;
Zhu, Peng ;
Pan, Feilong ;
Liu, Feng ;
Chen, Junwu ;
Huang, Fei ;
Cao, Yong .
ADVANCED MATERIALS, 2017, 29 (47)
[10]   Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% [J].
Fan, Baobing ;
Ying, Lei ;
Wang, Zhenfeng ;
He, Baitian ;
Jiang, Xiao-Fang ;
Huang, Fei ;
Cao, Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1243-1251