Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting

被引:68
作者
Song, Yiheng [1 ]
Wu, Tao [1 ]
Bao, Jiangkai [1 ]
Xu, Menghan [1 ]
Yang, Quanling [1 ]
Zhu, Liping [2 ]
Shi, Zhuqun [3 ]
Hu, Guo-Hua [4 ]
Xiong, Chuanxi [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Luoshi Rd 122, Wuhan 430070, Peoples R China
[2] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Luoshi Rd 122, Wuhan 430070, Peoples R China
[4] Univ Lorraine, Lab React & Proc Engn LRGP, CNRS, UMR CNRS 7274,ENSIC, 1 Rue Grandville,BP 20451, F-54001 Nancy, France
关键词
TEMPO-oxidized cellulose nanofibrils; MoS2; Porous aerogel film; Piezoelectric nanogenerators; Energy harvesting; PERFORMANCE; NANOCELLULOSE; NANOGENERATORS; NANOFIBERS; POROSITY;
D O I
10.1016/j.carbpol.2022.119407
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
& nbsp;The piezoelectric effect is one of the most promising electromechanical coupling processes for mechanical energy conversion and energy harvesting. However, natural polymer based piezoelectric materials are of poor piezo-electric performance. we developed flexible porous piezoelectric aerogel films based on TEMPO-oxidized cellulose nanofibrils (TOCN) and Mo-S2 nanosheets. Those aerogel films possessed large specific surface areas and abundant mesopores. Moreover, they exhibited very good piezoelectric properties when a field strength of 20 MV/m was used to polarize MoS2 nanosheets and air in the mesopores. When assembled to piezoelectric nanogenerators (PENGs), a TOCN/MoS2 aerogel film PENG containing 6 wt% of MoS2 exhibited the best output performance. It generated an open circuit voltage of 42 V and a short-circuit current of 1.1 mu A, a maximum area power density of 1.29 mu W/cm(2) and a maximum volume power density of 0.143 mu W/cm(3). These features enable them to be promising piezoelectric materials for energy harvesting.
引用
收藏
页数:9
相关论文
共 53 条
[11]   PIEZOELECTRICITY OF WOOD [J].
FUKADA, E .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1955, 10 (02) :149-154
[12]   Less can be more - Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers [J].
Gerhard-Multhaupt, R .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2002, 9 (05) :850-859
[13]   Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors [J].
Guan, Xiaoyang ;
Xu, Bingang ;
Gong, Jianliang .
NANO ENERGY, 2020, 70
[14]   Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films [J].
Jin, Congran ;
Hao, Nanjing ;
Xu, Zhe ;
Trase, Ian ;
Nie, Yuan ;
Dong, Lin ;
Closson, Andrew ;
Chen, Zi ;
Zhang, John X. J. .
SENSORS AND ACTUATORS A-PHYSICAL, 2020, 305
[15]   Enhanced dielectric and piezoelectric performance of (1-x) Bi0.5(Na0.78K0.22)0.5TiO3-xBaTiO3 ceramics [J].
Kang, Wenshuo ;
Li, Yuanliang ;
Zheng, Zhanshen ;
Zhao, Rujie .
CERAMICS INTERNATIONAL, 2020, 46 (11) :18089-18095
[16]   The discovery of the piezoelectric effect [J].
Katzir, S .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2003, 57 (01) :61-91
[17]   A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system [J].
Khadtare, Shubhangi ;
Ko, Eui Jin ;
Kim, Young Hoon ;
Lee, Hyoung Seok ;
Moon, Doo Kyung .
SENSORS AND ACTUATORS A-PHYSICAL, 2019, 299
[18]   Nanocellulose-based polymer composites for energy applications-A review [J].
Lasrado, Dylan ;
Ahankari, Sandeep ;
Kar, Kamal .
JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (27)
[19]   Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self -Orientation of Nanocrystals [J].
Liu, Xia ;
Ma, Jing ;
Wu, Xiaoming ;
Lin, Liwei ;
Wang, Xiaohong .
ACS NANO, 2017, 11 (02) :1901-1910
[20]   Ferroelectric Polymers Exhibiting Negative Longitudinal Piezoelectric Coefficient: Progress and Prospects [J].
Liu, Yang ;
Wang, Qing .
ADVANCED SCIENCE, 2020, 7 (06)